50 KiB
50 KiB
class superelliptic:
def __init__(self, f, m, p):
Rx.<x> = PolynomialRing(GF(p))
self.polynomial = Rx(f)
self.exponent = m
self.characteristic = p
def __repr__(self):
f = self.polynomial
m = self.exponent
p = self.characteristic
return 'Superelliptic curve with the equation y^' + str(m) + ' = ' + str(f)+' over finite field with ' + str(p) + ' elements.'
def genus(self):
r = self.polynomial.degree()
m = self.exponent
delta = GCD(r, m)
return 1/2*((r-1)*(m-1) - delta + 1)
def basis_holomorphic_differentials(self, j = 'all'):
f = self.polynomial
m = self.exponent
p = self.characteristic
r = f.degree()
delta = GCD(r, m)
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
basis = {}
k = 0
if j == 'all':
for j in range(1, m):
for i in range(1, r):
if (r*j - m*i >= delta):
basis[k] = superelliptic_form(self, Fxy(x^(i-1)/y^j))
k = k+1
return basis
else:
for i in range(1, r):
if (r*j - m*i >= delta):
basis[k] = superelliptic_form(self, Fxy(x^(i-1)/y^j))
k = k+1
return basis
def degree_and_basis_de_rham(self, j = 'all'):
f = self.polynomial
m = self.exponent
p = self.characteristic
r = f.degree()
delta = GCD(r, m)
Rx.<x> = PolynomialRing(GF(p))
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
basis = {}
degrees0 = {}
degrees1 = {}
t = 0
if j == 'all':
for j in range(1, m):
holo = C.basis_holomorphic_differentials(j)
for k in range(0, len(holo)):
basis[t] = superelliptic_cech(self, holo[k], superelliptic_function(self, Rx(0)))
g = Rx(holo[k].jth_component(j))
degrees0[t] = (g.degree(), j)
t += 1
for i in range(1, r):
if (r*(m-j) - m*i >= delta):
s = Rx(m-j)*Rx(x)*Rx(f.derivative()) - Rx(m)*Rx(i)*f
psi = Rx(cut(s, i))
basis[t] = superelliptic_cech(self, superelliptic_form(self, Fxy(psi/y^j)), superelliptic_function(self, Fxy(m*y^(m-j)/x^i)))
degrees0[t] = (psi.degree(), j)
degrees1[t] = (-i, m-j)
t += 1
return basis, degrees0, degrees1
def degree_de_rham(self, i, j='all'):
basis, degrees0, degrees1 = self.degree_and_basis_de_rham(j)
if i==0:
return degrees0
if i==1:
return degrees1
def basis_de_rham(self, j = 'all'):
basis, degrees0, degrees1 = self.degree_and_basis_de_rham(j)
return basis
def verschiebung_matrix(self):
basis = self.basis_de_rham()
g = self.genus()
p = self.characteristic
M = matrix(GF(p), 2*g, 2*g)
for i, w in basis.items():
v = w.verschiebung().coordinates()
M[i, :] = v
return M
def frobenius_matrix(self):
basis = self.basis_de_rham()
g = self.genus()
p = self.characteristic
M = matrix(GF(p), 2*g, 2*g)
for i, w in basis.items():
print('w', w)
v = w.frobenius().coordinates()
M[i, :] = v
return M
def reduction(C, g):
p = C.characteristic
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
f = C.polynomial
r = f.degree()
m = C.exponent
g = Fxy(g)
g1 = g.numerator()
g2 = g.denominator()
Rx.<x> = PolynomialRing(GF(p))
Fx = FractionField(Rx)
FxRy.<y> = PolynomialRing(Fx)
(A, B, C) = xgcd(FxRy(g2), FxRy(y^m - f))
g = FxRy(g1*B/A)
while(g.degree(Rxy(y)) >= m):
d = g.degree(Rxy(y))
G = coff(g, d)
i = floor(d/m)
g = g - G*y^d + f^i * y^(d%m) *G
return(FxRy(g))
def reduction_form(C, g):
p = C.characteristic
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
f = C.polynomial
r = f.degree()
m = C.exponent
g = reduction(C, g)
g1 = Rxy(0)
Rx.<x> = PolynomialRing(GF(p))
Fx = FractionField(Rx)
FxRy.<y> = PolynomialRing(Fx)
g = FxRy(g)
for j in range(0, m):
if j==0:
G = coff(g, 0)
g1 += FxRy(G)
else:
G = coff(g, j)
g1 += Fxy(y^(j-m)*f*G)
return(g1)
class superelliptic_function:
def __init__(self, C, g):
p = C.characteristic
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
f = C.polynomial
r = f.degree()
m = C.exponent
self.curve = C
g = reduction(C, g)
self.function = g
def __repr__(self):
return str(self.function)
def jth_component(self, j):
g = self.function
C = self.curve
p = C.characteristic
Rx.<x> = PolynomialRing(GF(p))
Fx.<x> = FractionField(Rx)
FxRy.<y> = PolynomialRing(Fx)
g = FxRy(g)
return coff(g, j)
def __add__(self, other):
C = self.curve
g1 = self.function
g2 = other.function
g = reduction(C, g1 + g2)
return superelliptic_function(C, g)
def __sub__(self, other):
C = self.curve
g1 = self.function
g2 = other.function
g = reduction(C, g1 - g2)
return superelliptic_function(C, g)
def __mul__(self, other):
C = self.curve
g1 = self.function
g2 = other.function
g = reduction(C, g1 * g2)
return superelliptic_function(C, g)
def __truediv__(self, other):
C = self.curve
g1 = self.function
g2 = other.function
g = reduction(C, g1 / g2)
return superelliptic_function(C, g)
def diffn(self):
C = self.curve
f = C.polynomial
m = C.exponent
p = C.characteristic
g = self.function
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
g = Fxy(g)
A = g.derivative(x)
B = g.derivative(y)*f.derivative(x)/(m*y^(m-1))
return superelliptic_form(C, A+B)
class superelliptic_form:
def __init__(self, C, g):
p = C.characteristic
Rxy.<x, y> = PolynomialRing(GF(p), 2)
Fxy = FractionField(Rxy)
g = Fxy(reduction_form(C, g))
self.form = g
self.curve = C
def __add__(self, other):
C = self.curve
g1 = self.form
g2 = other.form
g = reduction(C, g1 + g2)
return superelliptic_form(C, g)
def __sub__(self, other):
C = self.curve
g1 = self.form
g2 = other.form
g = reduction(C, g1 - g2)
return superelliptic_form(C, g)
def __repr__(self):
g = self.form
if len(str(g)) == 1:
return str(g) + ' dx'
return '('+str(g) + ') dx'
def cartier(self):
C = self.curve
m = C.exponent
p = C.characteristic
f = C.polynomial
Rx.<x> = PolynomialRing(GF(p))
Fx = FractionField(Rx)
FxRy.<y> = PolynomialRing(Fx)
Fxy = FractionField(FxRy)
result = superelliptic_form(C, FxRy(0))
mult_order = Integers(m)(p).multiplicative_order()
M = Integer((p^(mult_order)-1)/m)
for j in range(1, m):
fct_j = self.jth_component(j)
h = Rx(fct_j*f^(M*j))
j1 = (p^(mult_order-1)*j)%m
B = floor(p^(mult_order-1)*j/m)
result += superelliptic_form(C, polynomial_part(p, h)/(f^B*y^(j1)))
return result
def jth_component(self, j):
g = self.form
C = self.curve
p = C.characteristic
Rx.<x> = PolynomialRing(GF(p))
Fx = FractionField(Rx)
FxRy.<y> = PolynomialRing(Fx)
Fxy = FractionField(FxRy)
Ryinv.<y_inv> = PolynomialRing(Fx)
g = Fxy(g)
g = g(y = 1/y_inv)
g = Ryinv(g)
return coff(g, j)
def is_regular_on_U0(self):
C = self.curve
p = C.characteristic
m = C.exponent
Rx.<x> = PolynomialRing(GF(p))
for j in range(1, m):
if self.jth_component(j) not in Rx:
return 0
return 1
def is_regular_on_Uinfty(self):
C = self.curve
p = C.characteristic
m = C.exponent
f = C.polynomial
r = f.degree()
delta = GCD(m, r)
M = m/delta
R = r/delta
for j in range(1, m):
A = self.jth_component(j)
d = degree_of_rational_fctn(A)
if(-d*M + j*R -(M+1)<0):
print('not', d, j, r, m, -d*M + j*R -(M+1))
return 0
return 1
class superelliptic_cech:
def __init__(self, C, omega, fct):
self.omega0 = omega
self.omega8 = omega - diffn(fct)
self.f = fct
self.curve = C
def __add__(self, other):
C = self.curve
return superelliptic_cech(C, self.omega0 + other.omega0, self.f + other.f)
def __sub__(self, other):
C = self.curve
return superelliptic_cech(C, self.omega0 - other.omega0, self.f - other.f)
def mult(self, constant):
C = self.curve
w1 = self.omega0.form
f1 = self.f.function
w2 = superelliptic_form(C, constant*w1)
f2 = superelliptic_function(C, constant*f1)
return superelliptic_cech(C, w2, f2)
def __repr__(self):
return "(" + str(self.omega0) + ", " + str(self.f) + ", " + str(self.omega8) + ")"
def verschiebung(self):
C = self.curve
omega = self.omega0
p = C.characteristic
Rx.<x> = PolynomialRing(GF(p))
return superelliptic_cech(C, omega.cartier(), superelliptic_function(C, Rx(0)))
def frobenius(self):
C = self.curve
fct = self.f.function
p = C.characteristic
Rx.<x> = PolynomialRing(GF(p))
return superelliptic_cech(C, superelliptic_form(C, Rx(0)), superelliptic_function(C, fct^p))
def coordinates(self):
print(self, self.is_cocycle())
C = self.curve
p = C.characteristic
m = C.exponent
Rx.<x> = PolynomialRing(GF(p))
Fx = FractionField(Rx)
FxRy.<y> = PolynomialRing(Fx)
g = C.genus()
degrees0 = C.degree_de_rham(0)
degrees0_inv = {b:a for a, b in degrees0.items()}
degrees1 = C.degree_de_rham(1)
degrees1_inv = {b:a for a, b in degrees1.items()}
basis = C.basis_de_rham()
omega = self.omega0
fct = self.f
if fct.function == Rx(0) and omega.form != Rx(0):
print('c1')
for j in range(1, m):
omega_j = Fx(omega.jth_component(j))
if omega_j != Fx(0):
d = degree_of_rational_fctn(omega_j)
index = degrees0_inv[(d, j)]
print('baza', basis[index])
a = coeff_of_rational_fctn(omega_j)
a1 = coeff_of_rational_fctn(basis[index].omega0.jth_component(j))
elt = self - basis[index].mult(a/a1)
return elt.coordinates() + a/a1*vector([GF(p)(i == index) for i in range(0, 2*g)])
for j in range(1, m):
fct_j = Fx(fct.jth_component(j))
if (fct_j != Rx(0)):
d = degree_of_rational_fctn(fct_j)
if (d, j) in degrees1.values():
index = degrees1_inv[(d, j)]
a = coeff_of_rational_fctn(fct_j)
elt = self - basis[index].mult(a/m)
return elt.coordinates() + a/m*vector([GF(p)(i == index) for i in range(0, 2*g)])
if d<0:
a = coeff_of_rational_fctn(fct_j)
h = superelliptic_function(C, FxRy(a*y^j*x^d))
elt = superelliptic_cech(C, self.omega0, self.f - h)
return elt.coordinates()
if (fct_j != Rx(0)):
G = superelliptic_function(C, y^j*x^d)
a = coeff_of_rational_fctn(fct_j)
elt =self - superelliptic_cech(C, diffn(G), G).mult(a)
return elt.coordinates()
return vector(2*g*[0])
def is_cocycle(self):
w0 = self.omega0
w8 = self.omega8
fct = self.f
if not w0.is_regular_on_U0() and not w8.is_regular_on_Uinfty():
return('w0 & w8')
if not w0.is_regular_on_U0():
return('w0')
if not w8.is_regular_on_Uinfty():
return('w8')
if w0.is_regular_on_U0() and w8.is_regular_on_Uinfty():
return 1
return 0
def degree_of_rational_fctn(f):
Rx.<x> = PolynomialRing(GF(p))
Fx = FractionField(Rx)
f = Fx(f)
f1 = f.numerator()
f2 = f.denominator()
d1 = f1.degree()
d2 = f2.degree()
return(d1 - d2)
def coeff_of_rational_fctn(f):
Rx.<x> = PolynomialRing(GF(p))
Fx = FractionField(Rx)
f = Fx(f)
if f == Rx(0):
return 0
f1 = f.numerator()
f2 = f.denominator()
d1 = f1.degree()
d2 = f2.degree()
a1 = f1.coefficients(sparse = false)[d1]
a2 = f2.coefficients(sparse = false)[d2]
return(a1/a2)
def coff(f, d):
lista = f.coefficients(sparse = false)
if len(lista) <= d:
return 0
return lista[d]
def cut(f, i):
R = f.parent()
coeff = f.coefficients(sparse = false)
return sum(R(x^(j-i-1)) * coeff[j] for j in range(i+1, f.degree() + 1))
def polynomial_part(p, h):
Rx.<x> = PolynomialRing(GF(p))
h = Rx(h)
result = Rx(0)
for i in range(0, h.degree()+1):
if (i%p) == p-1:
power = Integer((i-(p-1))/p)
result += Integer(h[i]) * x^(power)
return result
p = 5
C = superelliptic(x^3 + x + 2, 7, p)
baza = C.basis_de_rham()
#C.basis_holomorphic_differentials()
C.frobenius_matrix()
w ((x/y) dx, 2/x*y^6, ((x - 1)/(x^2*y)) dx) (0 dx, ((2*x^12 + 3*x^10 + x^9 + 2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5)*y^2, 0 dx) 1 c2 c2 c2c coeff (2*x^12 + 3*x^10 + x^9 + 2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5 (((-x^7 + 2*x^6)/y^5) dx, ((3*x^10 + x^9 + 2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5)*y^2, 0 dx) 1 c2 c2 c2c coeff (3*x^10 + x^9 + 2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5 (((2*x^6 + 2*x^5)/y^5) dx, ((x^9 + 2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5)*y^2, 0 dx) 1 c2 c2 c2c coeff (x^9 + 2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5 (((2*x^5 + 2*x^3)/y^5) dx, ((2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5)*y^2, 0 dx) 1 c2 c2 c2c coeff (2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5 (((-x^3 - 2*x^2)/y^5) dx, ((3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5)*y^2, 0 dx) 1 c2 c2 c2c coeff (3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5 (((-x^3 - x^2 - 2*x)/y^5) dx, ((x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5)*y^2, 0 dx) 1 c2 c2 c2c coeff (x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5 (((-x^2 + x - 2)/y^5) dx, ((3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5)*y^2, 0 dx) 1 c2 c2 c2c coeff (3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^5 ((x/y^5) dx, ((3*x^4 + 3*x^2 + 4*x + 2)/x^5)*y^2, 0 dx) 1 c2 c2 c2b coeff (3*x^4 + 3*x^2 + 4*x + 2)/x^5 ((x/y^5) dx, ((3*x^2 + 4*x + 2)/x^5)*y^2, ((x^3 - 1)/(x^2*y^5)) dx) 1 c2 c2 c2b coeff (3*x^2 + 4*x + 2)/x^5 ((x/y^5) dx, ((4*x + 2)/x^5)*y^2, ((x^5 - x^2 - x + 2)/(x^4*y^5)) dx) 1 c2 c2 c2b coeff (4*x + 2)/x^5 ((x/y^5) dx, 2/x^5*y^2, ((x^6 - x^2 - 2)/(x^5*y^5)) dx) 1 c2 c2 c2b coeff 2/x^5 ((x/y^5) dx, 0, (x/y^5) dx) 1 c1 baza ((x/y^5) dx, 0, (x/y^5) dx) coeff x coeff x (0 dx, 0, 0 dx) 1 c2 c2 c2 c2 c2 c2 w (((-1)/y) dx, 2/x^2*y^6, ((-2*x - 2)/(x^3*y)) dx) (0 dx, ((2*x^12 + 3*x^10 + x^9 + 2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10)*y^2, 0 dx) 1 c2 c2 c2c coeff (2*x^12 + 3*x^10 + x^9 + 2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10 (((-x^2 + 2*x)/y^5) dx, ((3*x^10 + x^9 + 2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10)*y^2, 0 dx) 1 c2 c2 c2c coeff (3*x^10 + x^9 + 2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10 (((2*x + 2)/y^5) dx, ((x^9 + 2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10)*y^2, 0 dx) 1 c2 c2 c2b coeff (x^9 + 2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10 (((2*x + 2)/y^5) dx, ((2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10)*y^2, ((2*x^3 - 2)/(x^2*y^5)) dx) 1 c2 c2 c2b coeff (2*x^8 + 3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10 (((2*x + 2)/y^5) dx, ((3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10)*y^2, ((2*x^4 + 2*x^3 + x + 2)/(x^3*y^5)) dx) 1 c2 c2 c2b coeff (3*x^7 + x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10 (((2*x + 2)/y^5) dx, ((x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10)*y^2, ((2*x^5 + 2*x^4 + x^2 + x + 2)/(x^4*y^5)) dx) 1 c2 c2 c2b coeff (x^6 + 3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10 (((2*x + 2)/y^5) dx, ((3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10)*y^2, ((2*x^6 + 2*x^5 + x^2 - x + 2)/(x^5*y^5)) dx) 1 c2 c2 c2b coeff (3*x^5 + 3*x^4 + 3*x^2 + 4*x + 2)/x^10 (((2*x + 2)/y^5) dx, ((3*x^4 + 3*x^2 + 4*x + 2)/x^10)*y^2, ((2*x^5 + 2*x^4 - 1)/(x^4*y^5)) dx) 1 c2 c2 c2b coeff (3*x^4 + 3*x^2 + 4*x + 2)/x^10 (((2*x + 2)/y^5) dx, ((3*x^2 + 4*x + 2)/x^10)*y^2, ((2*x^8 + 2*x^7 - 1)/(x^7*y^5)) dx) 1 c2 c2 c2b coeff (3*x^2 + 4*x + 2)/x^10 (((2*x + 2)/y^5) dx, ((4*x + 2)/x^10)*y^2, ((2*x^10 + 2*x^9 - x^2 - x + 2)/(x^9*y^5)) dx) 1 c2 c2 c2b coeff (4*x + 2)/x^10 (((2*x + 2)/y^5) dx, 2/x^10*y^2, ((2*x^11 + 2*x^10 - x^2 - 2)/(x^10*y^5)) dx) 1 c2 c2 c2b coeff 2/x^10 (((2*x + 2)/y^5) dx, 0, ((2*x + 2)/y^5) dx) 1 c1 baza ((x/y^5) dx, 0, (x/y^5) dx) coeff 2*x + 2 coeff x ((2/y^5) dx, 0, (2/y^5) dx) 1 c1 baza ((1/y^5) dx, 0, (1/y^5) dx) coeff 2 coeff 1 (0 dx, 0, 0 dx) 1 c2 c2 c2 c2 c2 c2 w (((-2*x)/y^2) dx, 2/x*y^5, ((2*x - 1)/(x^2*y^2)) dx) (0 dx, ((2*x^9 + x^7 + 2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^5)*y^4, 0 dx) 1 c2 c2 c2 c2 c2c coeff (2*x^9 + x^7 + 2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^5 (((-2*x^4 - x^3)/y^3) dx, ((x^7 + 2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^5)*y^4, 0 dx) 1 c2 c2 c2 c2 c2c coeff (x^7 + 2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^5 (((-x^3 + x^2 + x)/y^3) dx, ((2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^5)*y^4, 0 dx) 1 c2 c2 c2 c2 c2c coeff (2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^5 (((x^2 + 1)/y^3) dx, ((x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^5)*y^4, 0 dx) 1 c2 c2 c2 c2 c2c coeff (x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^5 (((-1)/y^3) dx, ((4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^5)*y^4, 0 dx) 1 c2 c2 c2 c2 c2a coeff (4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^5 2 5 (0 dx, 2/x*y^4, ((-2*x - 1)/(x^2*y^3)) dx) przed d -1 j 4 (((-1)/y^3) dx, ((4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^5)*y^4, 0 dx) (0 dx, 4/x*y^4, ((x - 2)/(x^2*y^3)) dx) po (((-1)/y^3) dx, ((x^3 + 2*x^2 + 4*x + 1)/x^5)*y^4, ((-x + 2)/(x^2*y^3)) dx) (((-1)/y^3) dx, ((x^3 + 2*x^2 + 4*x + 1)/x^5)*y^4, ((-x + 2)/(x^2*y^3)) dx) 1 c2 c2 c2 c2 c2b coeff (x^3 + 2*x^2 + 4*x + 1)/x^5 (((-1)/y^3) dx, ((2*x^2 + 4*x + 1)/x^5)*y^4, ((-x^3 - x^2 + 2*x + 1)/(x^3*y^3)) dx) 1 c2 c2 c2 c2 c2b coeff (2*x^2 + 4*x + 1)/x^5 (((-1)/y^3) dx, ((4*x + 1)/x^5)*y^4, ((-x^4 + 2*x^2 - x - 2)/(x^4*y^3)) dx) 1 c2 c2 c2 c2 c2b coeff (4*x + 1)/x^5 (((-1)/y^3) dx, 1/x^5*y^4, ((-x^5 - x^2 - 2)/(x^5*y^3)) dx) 1 c2 c2 c2 c2 c2b coeff 1/x^5 (((-1)/y^3) dx, 0, ((-1)/y^3) dx) 1 c1 baza ((1/y^3) dx, 0, (1/y^3) dx) coeff 4 coeff 1 (0 dx, 0, 0 dx) 1 c2 c2 c2 c2 c2 c2 w ((1/y^2) dx, 2/x^2*y^5, ((-x - 2)/(x^3*y^2)) dx) (0 dx, ((2*x^9 + x^7 + 2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^10)*y^4, 0 dx) 1 c2 c2 c2 c2 c2a coeff (2*x^9 + x^7 + 2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^10 1 5 (0 dx, 2/x*y^4, ((-2*x - 1)/(x^2*y^3)) dx) przed d -1 j 4 (0 dx, ((2*x^9 + x^7 + 2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^10)*y^4, 0 dx) (0 dx, 2/x*y^4, ((-2*x - 1)/(x^2*y^3)) dx) po (0 dx, ((x^7 + 2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^10)*y^4, ((2*x + 1)/(x^2*y^3)) dx) (0 dx, ((x^7 + 2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^10)*y^4, ((2*x + 1)/(x^2*y^3)) dx) 1 c2 c2 c2 c2 c2b coeff (x^7 + 2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^10 (0 dx, ((2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^10)*y^4, ((x^2 - x - 1)/(x^4*y^3)) dx) 1 c2 c2 c2 c2 c2b coeff (2*x^6 + x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^10 (0 dx, ((x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^10)*y^4, ((-x^2 - 1)/(x^5*y^3)) dx) 1 c2 c2 c2 c2 c2b coeff (x^5 + 4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^10 (0 dx, ((4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^10)*y^4, (1/(x^5*y^3)) dx) 1 c2 c2 c2 c2 c2b coeff (4*x^4 + x^3 + 2*x^2 + 4*x + 1)/x^10 (0 dx, ((x^3 + 2*x^2 + 4*x + 1)/x^10)*y^4, ((x^2 - x + 2)/(x^7*y^3)) dx) 1 c2 c2 c2 c2 c2b coeff (x^3 + 2*x^2 + 4*x + 1)/x^10 (0 dx, ((2*x^2 + 4*x + 1)/x^10)*y^4, ((-x^2 + 2*x + 1)/(x^8*y^3)) dx) 1 c2 c2 c2 c2 c2b coeff (2*x^2 + 4*x + 1)/x^10 (0 dx, ((4*x + 1)/x^10)*y^4, ((2*x^2 - x - 2)/(x^9*y^3)) dx) 1 c2 c2 c2 c2 c2b coeff (4*x + 1)/x^10 (0 dx, 1/x^10*y^4, ((-x^2 - 2)/(x^10*y^3)) dx) 1 c2 c2 c2 c2 c2b coeff 1/x^10 (0 dx, 0, 0 dx) 1 c2 c2 c2 c2 c2 c2 w ((1/y^3) dx, 0, (1/y^3) dx) (0 dx, 0, 0 dx) 1 c2 c2 c2 c2 c2 c2 w (0 dx, 2/x*y^4, ((-2*x - 1)/(x^2*y^3)) dx) (0 dx, ((2*x^6 + 4*x^4 + 3*x^3 + 2*x^2 + 3*x + 3)/x^5)*y^6, 0 dx) 1 c2 c2 c2 c2 c2 c2 c2c coeff (2*x^6 + 4*x^4 + 3*x^3 + 2*x^2 + 3*x + 3)/x^5 (((2*x + 1)/y) dx, ((4*x^4 + 3*x^3 + 2*x^2 + 3*x + 3)/x^5)*y^6, 0 dx) 1 c2 c2 c2 c2 c2 c2 c2a coeff (4*x^4 + 3*x^3 + 2*x^2 + 3*x + 3)/x^5 2 0 ((x/y) dx, 2/x*y^6, ((x - 1)/(x^2*y)) dx) przed d -1 j 6 (((2*x + 1)/y) dx, ((4*x^4 + 3*x^3 + 2*x^2 + 3*x + 3)/x^5)*y^6, 0 dx) ((2*x/y) dx, 4/x*y^6, ((2*x - 2)/(x^2*y)) dx) po ((1/y) dx, ((3*x^3 + 2*x^2 + 3*x + 3)/x^5)*y^6, ((-2*x + 2)/(x^2*y)) dx) ((1/y) dx, ((3*x^3 + 2*x^2 + 3*x + 3)/x^5)*y^6, ((-2*x + 2)/(x^2*y)) dx) 1 c2 c2 c2 c2 c2 c2 c2a coeff (3*x^3 + 2*x^2 + 3*x + 3)/x^5 4 1 (((-1)/y) dx, 2/x^2*y^6, ((-2*x - 2)/(x^3*y)) dx) przed d -2 j 6 ((1/y) dx, ((3*x^3 + 2*x^2 + 3*x + 3)/x^5)*y^6, ((-2*x + 2)/(x^2*y)) dx) ((1/y) dx, 3/x^2*y^6, ((2*x + 2)/(x^3*y)) dx) po (0 dx, ((2*x^2 + 3*x + 3)/x^5)*y^6, ((-2*x^2 - 2)/(x^3*y)) dx) (0 dx, ((2*x^2 + 3*x + 3)/x^5)*y^6, ((-2*x^2 - 2)/(x^3*y)) dx) 1 c2 c2 c2 c2 c2 c2 c2b coeff (2*x^2 + 3*x + 3)/x^5 (0 dx, ((3*x + 3)/x^5)*y^6, ((-2*x - 2)/(x^4*y)) dx) 1 c2 c2 c2 c2 c2 c2 c2b coeff (3*x + 3)/x^5 (0 dx, 3/x^5*y^6, ((-2*x^2 + 1)/(x^5*y)) dx) 1 c2 c2 c2 c2 c2 c2 c2b coeff 3/x^5 (0 dx, 0, 0 dx) 1 c2 c2 c2 c2 c2 c2 w ((1/y^4) dx, 0, (1/y^4) dx) (0 dx, 0, 0 dx) 1 c2 c2 c2 c2 c2 c2 w ((2*x/y^4) dx, 2/x*y^3, ((-x - 1)/(x^2*y^4)) dx) (0 dx, ((2*x^6 + 4*x^4 + 3*x^3 + 2*x^2 + 3*x + 3)/x^5)*y, 0 dx) 1 c2 c2c coeff (2*x^6 + 4*x^4 + 3*x^3 + 2*x^2 + 3*x + 3)/x^5 (((2*x + 1)/y^6) dx, ((4*x^4 + 3*x^3 + 2*x^2 + 3*x + 3)/x^5)*y, 0 dx) 1 c2 c2b coeff (4*x^4 + 3*x^3 + 2*x^2 + 3*x + 3)/x^5 (((2*x + 1)/y^6) dx, ((3*x^3 + 2*x^2 + 3*x + 3)/x^5)*y, ((2*x^3 - 2*x + 2)/(x^2*y^6)) dx) 1 c2 c2b coeff (3*x^3 + 2*x^2 + 3*x + 3)/x^5 (((2*x + 1)/y^6) dx, ((2*x^2 + 3*x + 3)/x^5)*y, ((2*x^4 + x^3 - 2*x^2 - 2)/(x^3*y^6)) dx) 1 c2 c2b coeff (2*x^2 + 3*x + 3)/x^5 (((2*x + 1)/y^6) dx, ((3*x + 3)/x^5)*y, ((2*x^5 + x^4 - 2*x - 2)/(x^4*y^6)) dx) 1 c2 c2b coeff (3*x + 3)/x^5 (((2*x + 1)/y^6) dx, 3/x^5*y, ((2*x^6 + x^5 - 2*x^2 + 1)/(x^5*y^6)) dx) 1 c2 c2b coeff 3/x^5 (((2*x + 1)/y^6) dx, 0, ((2*x + 1)/y^6) dx) 1 c1 baza ((x/y^6) dx, 0, (x/y^6) dx) coeff 2*x + 1 coeff x ((1/y^6) dx, 0, (1/y^6) dx) 1 c1 baza ((1/y^6) dx, 0, (1/y^6) dx) coeff 1 coeff 1 (0 dx, 0, 0 dx) 1 c2 c2 c2 c2 c2 c2 w ((1/y^5) dx, 0, (1/y^5) dx) (0 dx, 0, 0 dx) 1 c2 c2 c2 c2 c2 c2 w ((x/y^5) dx, 0, (x/y^5) dx) (0 dx, 0, 0 dx) 1 c2 c2 c2 c2 c2 c2 w ((1/y^6) dx, 0, (1/y^6) dx) (0 dx, 0, 0 dx) 1 c2 c2 c2 c2 c2 c2 w ((x/y^6) dx, 0, (x/y^6) dx) (0 dx, 0, 0 dx) 1 c2 c2 c2 c2 c2 c2
[0 0 0 0 0 0 0 0 0 1 0 0] [0 0 0 0 0 0 0 0 2 2 0 0] [0 0 0 0 4 2 0 0 0 0 0 0] [0 0 0 0 0 1 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0] [2 4 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 1 2] [0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0]
w.coordinates()
(((-x*y + 1)/y^5) dx, 4/x*y^4, ((-x^3*y + x*y^2 + x^2 - 2*y^2)/(x^2*y^5)) dx) ((1/y^5) dx, 0, (1/y^5) dx) (0 dx, 0, 0 dx)
(0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0)
a, b, c = C.degree_and_basis_de_rham()
licz = 0
m = 2
p = 5
R1.<x> = PolynomialRing(GF(p))
f = R1(x^3 + x + 4)
r = f.degree()
C = superelliptic(f, m, p)
for i in range(0, r):
for j in range(1, m):
omega = superelliptic_form(C, x^i/y^j)
if (omega.is_regular_on_U0() and omega.is_regular_on_Uinfty()):
print(omega)
licz += 1
print(licz, C.genus())
print(C.basis_holomorphic_differentials())
[0;31m---------------------------------------------------------------------------[0m [0;31mNameError[0m Traceback (most recent call last) [0;32m<ipython-input-7-1009561bb01d>[0m in [0;36m<module>[0;34m()[0m [1;32m 8[0m [0;32mfor[0m [0mi[0m [0;32min[0m [0mrange[0m[0;34m([0m[0mInteger[0m[0;34m([0m[0;36m0[0m[0;34m)[0m[0;34m,[0m [0mr[0m[0;34m)[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [1;32m 9[0m [0;32mfor[0m [0mj[0m [0;32min[0m [0mrange[0m[0;34m([0m[0mInteger[0m[0;34m([0m[0;36m1[0m[0;34m)[0m[0;34m,[0m [0mm[0m[0;34m)[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [0;32m---> 10[0;31m [0momega[0m [0;34m=[0m [0msuperelliptic_form[0m[0;34m([0m[0mC[0m[0;34m,[0m [0mx[0m[0;34m**[0m[0mi[0m[0;34m/[0m[0my[0m[0;34m**[0m[0mj[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 11[0m [0;32mif[0m [0;34m([0m[0momega[0m[0;34m.[0m[0mis_regular_on_U0[0m[0;34m([0m[0;34m)[0m [0;32mand[0m [0momega[0m[0;34m.[0m[0mis_regular_on_Uinfty[0m[0;34m([0m[0;34m)[0m[0;34m)[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [1;32m 12[0m [0mprint[0m[0;34m([0m[0momega[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0;31mNameError[0m: name 'y' is not defined
p = 5
R.<x, y> = PolynomialRing(GF(p), 2)
g = x^6*y^2 + y^2
omega = diffn(superelliptic_function(C, y^2))
omega.jth_component(0)
3*x^2 + 1
R.<x, y> = PolynomialRing(GF(p), 2)
g1 = x^3*y^7 + x^2*y^9
g2 = x^2*y + y^6
R1.<x> = PolynomialRing(GF(p))
R2 = FractionField(R1)
R3.<y> = PolynomialRing(R2)
xgcd(R3(g1), R3(g2))[1]*R3(g1) + xgcd(R3(g1), R3(g2))[2]*R3(g2)
y
H = HyperellipticCurve(x^5 - x + 1)
H
Hyperelliptic Curve over Finite Field of size 5 defined by y^2 = x^5 + 4*x + 1
f = x^3 + x + 2
f.derivative(x)
-2*x^2 + 1
p = 5
R1.<x> = PolynomialRing(GF(p))
R2 = FractionField(R1)
R3.<y> = PolynomialRing(R2)
g = y^2/x + y/(x+1)
g = 1/y+x/y^2
R3.<z> = PolynomialRing(R2)
g(y = 1/z)
x*z^2 + z
f
x^3 + x + 4
f.coefficient()
[0;31m---------------------------------------------------------------------------[0m [0;31mAttributeError[0m Traceback (most recent call last) [0;32m<ipython-input-62-e054c182ec1a>[0m in [0;36m<module>[0;34m()[0m [0;32m----> 1[0;31m [0mf[0m[0;34m.[0m[0mcoefficient[0m[0;34m([0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m [0;32m/opt/sagemath-9.1/local/lib/python3.7/site-packages/sage/structure/element.pyx[0m in [0;36msage.structure.element.Element.__getattr__ (build/cythonized/sage/structure/element.c:4614)[0;34m()[0m [1;32m 485[0m [0mAttributeError[0m[0;34m:[0m [0;34m'LeftZeroSemigroup_with_category.element_class'[0m [0mobject[0m [0mhas[0m [0mno[0m [0mattribute[0m [0;34m'blah_blah'[0m[0;34m[0m[0;34m[0m[0m [1;32m 486[0m """ [0;32m--> 487[0;31m [0;32mreturn[0m [0mself[0m[0;34m.[0m[0mgetattr_from_category[0m[0;34m([0m[0mname[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 488[0m [0;34m[0m[0m [1;32m 489[0m [0mcdef[0m [0mgetattr_from_category[0m[0;34m([0m[0mself[0m[0;34m,[0m [0mname[0m[0;34m)[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [0;32m/opt/sagemath-9.1/local/lib/python3.7/site-packages/sage/structure/element.pyx[0m in [0;36msage.structure.element.Element.getattr_from_category (build/cythonized/sage/structure/element.c:4723)[0;34m()[0m [1;32m 498[0m [0;32melse[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [1;32m 499[0m [0mcls[0m [0;34m=[0m [0mP[0m[0;34m.[0m[0m_abstract_element_class[0m[0;34m[0m[0;34m[0m[0m [0;32m--> 500[0;31m [0;32mreturn[0m [0mgetattr_from_other_class[0m[0;34m([0m[0mself[0m[0;34m,[0m [0mcls[0m[0;34m,[0m [0mname[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 501[0m [0;34m[0m[0m [1;32m 502[0m [0;32mdef[0m [0m__dir__[0m[0;34m([0m[0mself[0m[0;34m)[0m[0;34m:[0m[0;34m[0m[0;34m[0m[0m [0;32m/opt/sagemath-9.1/local/lib/python3.7/site-packages/sage/cpython/getattr.pyx[0m in [0;36msage.cpython.getattr.getattr_from_other_class (build/cythonized/sage/cpython/getattr.c:2614)[0;34m()[0m [1;32m 392[0m [0mdummy_error_message[0m[0;34m.[0m[0mcls[0m [0;34m=[0m [0mtype[0m[0;34m([0m[0mself[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [1;32m 393[0m [0mdummy_error_message[0m[0;34m.[0m[0mname[0m [0;34m=[0m [0mname[0m[0;34m[0m[0;34m[0m[0m [0;32m--> 394[0;31m [0;32mraise[0m [0mAttributeError[0m[0;34m([0m[0mdummy_error_message[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[1;32m 395[0m [0mattribute[0m [0;34m=[0m [0;34m<[0m[0mobject[0m[0;34m>[0m[0mattr[0m[0;34m[0m[0;34m[0m[0m [1;32m 396[0m [0;31m# Check for a descriptor (__get__ in Python)[0m[0;34m[0m[0;34m[0m[0;34m[0m[0m [0;31mAttributeError[0m: 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint' object has no attribute 'coefficient'
x^3+x+1
x^3 + x + 1
parent(x)
Symbolic Ring
R.<x> = PolynomialRing(GF(5))
R = (x^3+x).parent()
R.<x, y> = PolynomialRing(GF(5))
RR = FractionField(R)
A = RR(1/(x*y))
A.derivative(x)
(-1)/(x^2*y)
dict1 = {}
dict1[3] = 5
dict1[6] = 121
degrees1_inv = {b:a for a, b in dict1.items()}
degrees1_inv
{5: 3, 121: 6}
C
Superelliptic curve with the equation y^7 = x^3 + x + 2 over finite field with 5 elements.
basis = C.basis_de_rham()
basis.items()
dict_items([(0, ((x/y) dx, 2/x*y, ((x^3*y^5 - x^3 + x - 1)/(x^2*y^6)) dx)), (1, (((-1)/y) dx, 2/x^2*y, ((-x^3*y^5 + x^3 - 2*x - 2)/(x^3*y^6)) dx)), (2, (((-2*x)/y^2) dx, 2/x*y^2, ((-2*x^3*y^3 + x^3 - 1)/(x^2*y^5)) dx)), (3, ((1/y^2) dx, 2/x^2*y^2, ((x^3*y^3 - 2*x^3 + 2*x - 2)/(x^3*y^5)) dx)), (4, ((1/y^3) dx, 0, (1/y^3) dx)), (5, (0 dx, 2/x*y^3, ((-2*x^3 - x - 1)/(x^2*y^4)) dx)), (6, ((1/y^4) dx, 0, (1/y^4) dx)), (7, ((2*x/y^4) dx, 2/x*y^4, ((2*x^3 - 2*x*y - y)/(x^2*y^4)) dx)), (8, ((1/y^5) dx, 0, (1/y^5) dx)), (9, ((x/y^5) dx, 0, (x/y^5) dx)), (10, ((1/y^6) dx, 0, (1/y^6) dx)), (11, ((x/y^6) dx, 0, (x/y^6) dx))])