1
0
DeRhamComputation/elementary_covers/as_polyforms.sage

221 lines
8.5 KiB
Python

class as_polyform:
def __init__(self, form, mult):
'''Elements of H^0(Ω^⊗n). Usage: mult is n, form should be as_function.'''
self.form = form
self.curve = form.curve
self.mult = mult
def __add__(self, other):
return as_polyform(self.form + other.form, self.mult)
def __repr__(self):
return '(' + str(self.form) + ') dx⊗' + str(self.mult)
def expansion_at_infty(self, place):
return self.form.expansion_at_infty(place=place)*(self.curve.dx.expansion_at_infty(place=place))^(self.mult)
def coordinates(self, basis = 0):
"""Find coordinates of the given holomorphic form self in terms of the basis forms in a list holo."""
AS = self.curve
if basis == 0:
basis = AS.holo_polydifferentials_basis(mult = self.mult)
RxyzQ, Rxyz, x, y, z = AS.fct_field
# We need to have only polynomials to use monomial_coefficients in linear_representation_polynomials,
# and sometimes basis elements have denominators. Thus we multiply by them.
denom = LCM([denominator(omega.form.function) for omega in basis])
basis = [denom*omega.form.function for omega in basis]
self_with_no_denominator = denom*self.form.function
return linear_representation_polynomials(Rxyz(self_with_no_denominator), [Rxyz(omega) for omega in basis])
def group_action(self, elt):
return as_polyform(self.form.group_action(elt), self.mult)
def as_holo_polydifferentials_basis(AS, mult, threshold = 8):
'''Give the basis of H^0(Ω^⊗n) for n = mult.'''
v = AS.dx.valuation()
result = AS.at_most_poles(mult*v, threshold=threshold)
result = [as_polyform(omega, mult) for omega in result]
if mult == 1 and len(result) < AS.genus():
raise ValueError('Increase threshold, not all forms found.')
if mult > 1 and len(result) < (2*mult - 1)*(AS.genus() - 1):
raise ValueError('Increase threshold, not all forms found.')
return result
as_cover.holo_polydifferentials_basis = as_holo_polydifferentials_basis
def as_symmetric_power_basis(AS, n, threshold = 8):
'''Give the basis of H^0(Ω)^⊙n for n = mult.'''
g = AS.genus()
B0 = AS.holomorphic_differentials_basis(threshold=threshold)
from itertools import product
indices = [list(range(g)) for i in range(n)]
indices_nonrepeating = []
for i in product(*indices):
if non_decreasing(i):
indices_nonrepeating += [i]
result = []
for i in indices_nonrepeating:
tensor_form = [B0[i[j]] for j in range(n)]
tensor_form = [1] + tensor_form
result += [tensor_form]
result = [as_symmetric_product_forms([a]) for a in result]
return result
def as_canonical_ideal(AS, n, threshold=8):
'''Return the n-th homogeneous part of the canonical ideal.'''
B0 = AS.holomorphic_differentials_basis(threshold=threshold)
F = AS.base_ring
g = AS.genus()
RxyzQ, Rxyz, x, y, z = AS.fct_field
from itertools import product
B1 = as_symmetric_power_basis(AS, n, threshold = 8)
B2 = AS.holo_polydifferentials_basis(n, threshold = threshold)
g = AS.genus()
r = len(B2)
M = matrix(F, len(B1), r)
for i in range(0, len(B1)):
c = B1[i].multiply()
#return M, c.coordinates(basis=B2)
M[i, :] = vector(c.coordinates(basis=B2))
K = M.kernel().basis()
result = []
for v in K:
kernel_vector = 0*B1[0]
for i in range(len(v)):
kernel_vector += v[i]*B1[i]
result += [kernel_vector]
return result
as_cover.canonical_ideal = as_canonical_ideal
def as_canonical_ideal_polynomials(AS, n, threshold=8):
'''Return the polynomials defining n-th homogeneous part of the canonical ideal.'''
return [a.polynomial() for a in AS.canonical_ideal(n, threshold=threshold)]
as_cover.canonical_ideal_polynomials = as_canonical_ideal_polynomials
class as_symmetric_product_forms:
def __init__(self, forms_and_coeffs):
'''Elements of forms_and_coeffs are of the form [coeff, form_1, ..., form_n]'''
self.n = len(forms_and_coeffs[0]) - 1
forms_and_coeffs1 = []
for atuple in forms_and_coeffs:
if atuple[0] != 0 and atuple[1:] not in [a[1:] for a in forms_and_coeffs1]:
forms_and_coeffs1 += [atuple]
elif atuple[1:] in [a[1:] for a in forms_and_coeffs1]:
i = [a[1:] for a in forms_and_coeffs1].index(atuple[1:])
forms_and_coeffs1[i][0] += atuple[0]
if len(forms_and_coeffs1) == 0:
forms_and_coeffs1 = [[0] + forms_and_coeffs[0][1:]]
self.tuples = forms_and_coeffs1
self.curve = forms_and_coeffs1[0][1].curve
def coordinates(self, basis = 0):
AS = self.curve
g = AS.genus()
n = self.n
F = AS.base_ring
if basis == 0:
basis = AS.holomorphic_differentials_basis()
from itertools import product
indices = [list(range(g)) for i in range(self.n)]
result = {i : 0 for i in product(*indices)}
for atuple in self.tuples:
coors = [omega.coordinates(basis = basis) for omega in atuple[1:]]
for i in product(*indices):
aux_product = 1
for j in range(n):
aux_product *= coors[j][i[j]]
result[i] += atuple[0]*aux_product
return result
def __repr__(self):
result = ''
for atuple in self.tuples:
if atuple[0] !=0:
result += str(atuple[0]) + ' * '
for j in range(1, self.n+1):
result += "(" + str(atuple[j]) + ")"
if j != self.n:
result + ''
result += ' + '
return result
def __add__(self, other):
return as_symmetric_product_forms(self.tuples + other.tuples)
def __rmul__(self, other):
AS = self.curve
F = AS.base_ring
if isinstance(other, int) or other in ZZ or other in F:
aux_tuples = []
for atuple in self.tuples:
atuple1 = [other * atuple[0]] + atuple[1:]
aux_tuples += [atuple1]
return as_symmetric_product_forms(aux_tuples)
def multiply(self):
'''The map H^0(Ω)^⊙n ---> H^0(Ω^⊗n)'''
n = self.n
AS = self.curve
RxyzQ, Rxyz, x, y, z = AS.fct_field
result = as_polyform(0*AS.x, n)
for atuple in self.tuples:
aux_product = Rxyz(1)
for fct in atuple[1:]:
aux_product = aux_product * fct.form
aux_product = as_function(AS, aux_product)
aux_product = as_reduction(AS, aux_product)
aux_product = as_function(AS, aux_product)
result += as_polyform(atuple[0]*aux_product, n)
return result
def polynomial(self):
'''Return the associated polynomial.'''
AS = self.curve
F = AS.base_ring
g = AS.genus()
M = self.coordinates()
n = self.n
Rg = PolynomialRing(F, 'X', g)
X = Rg.gens()
from itertools import product
indices = [list(range(g)) for i in range(self.n)]
result = Rg(0)
for i in product(*indices):
aux_product = Rg(1)
for j in range(n):
aux_product *= X[i[j]]
result += M[i] * aux_product
return result
def group_action(self, elt):
p = self.curve.base_ring.characteristic()
n = self.curve.height
aux_tuples = []
for atuple in self.tuples:
aux_tuple = [atuple[0]] + [a.group_action(elt) for a in atuple[1:]]
aux_tuples += [aux_tuple]
return as_symmetric_product_forms(aux_tuples)
def non_decreasing(L):
return all(x<=y for x, y in zip(L, L[1:]))
def as_matrices_group_action_canonical_ideal(AS, mult, threshold = 8):
'''Return the group action matrices for the n-th homogeneous part of the canonical ideal.'''
K = as_canonical_ideal(AS, mult, threshold = threshold)
n = AS.height
F = AS.base_ring
K_polynomials = [a.polynomial() for a in K]
r = len(K)
matrices = []
for i in range(n):
M = matrix(F, r, r)
K_group_action_polynomials = [a.group_action([j == i for j in range(n)]).polynomial() for a in K]
for i in range(r):
M[i, :] = vector(linear_representation_polynomials(K_group_action_polynomials[i], K_polynomials))
matrices += [M]
return matrices
as_cover.group_action_canonical_ideal = as_matrices_group_action_canonical_ideal