1
0
DeRhamComputation/elementary_covers/holomorphic_combinations.sage

149 lines
6.1 KiB
Python

def holomorphic_combinations(S):
"""Given a list S of pairs (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt."""
C_AS = S[0][0].curve
p = C_AS.characteristic
F = C_AS.base_ring
prec = C_AS.prec
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
RtQ = FractionField(Rt)
minimal_valuation = min([g[1].valuation() for g in S])
if minimal_valuation >= 0:
return [s[0] for s in S]
list_of_lists = [] #to będzie lista złożona z list współczynników część nieholomorficznych rozwinięcia form z S
for eta, eta_exp in S:
a = -minimal_valuation + eta_exp.valuation()
list_coeffs = a*[0] + eta_exp.list() + (-minimal_valuation)*[0]
list_coeffs = list_coeffs[:-minimal_valuation]
list_of_lists += [list_coeffs]
M = matrix(F, list_of_lists)
V = M.kernel() #chcemy wyzerować części nieholomorficzne, biorąc kombinacje form z S
# Sprawdzamy, jakim formom odpowiadają elementy V.
forms = []
for vec in V.basis():
forma_holo = 0*S[0][0]
forma_holo_power_series = Rt(0)
for vec_wspolrzedna, elt_S in zip(vec, S):
eta = elt_S[0]
#eta_exp = elt_S[1]
forma_holo += vec_wspolrzedna*eta
#forma_holo_power_series += vec_wspolrzedna*eta_exp
forms += [forma_holo]
return forms
def holomorphic_combinations_mixed(S):
"""Given a list S of pairs (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt."""
C_AS = S[0][0].curve
p = C_AS.characteristic
F = C_AS.base_ring
prec = C_AS.prec
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
RtQ = FractionField(Rt)
minimal_valuation = min([g[1].valuation() for g in S])
print(minimal_valuation)
if minimal_valuation >= 0:
return [s[0] for s in S]
list_of_lists = [] #to będzie lista złożona z list współczynników część nieholomorficznych rozwinięcia form z S
for eta, eta_exp in S:
a = -minimal_valuation + eta_exp.valuation()
list_coeffs = a*[0] + eta_exp.list() + (-minimal_valuation)*[0]
list_coeffs = list_coeffs[:-minimal_valuation]
list_of_lists += [list_coeffs]
M = matrix(F, list_of_lists)
V = M.kernel() #chcemy wyzerować części nieholomorficzne, biorąc kombinacje form z S
# Sprawdzamy, jakim formom odpowiadają elementy V.
forms = []
for vec in V.basis():
forma_holo = 0*S[0][0]
forma_holo_power_series = Rt(0)
res1 = 0*C_AS.dx
res2 = 0*C_AS.x
res = 0*C_AS.dx
for vec_wspolrzedna, elt_S in zip(vec, S):
eta = elt_S[0]
if isinstance(eta, as_form):
res += vec_wspolrzedna*eta
res1 += vec_wspolrzedna*eta
if isinstance(eta, as_function):
res += vec_wspolrzedna*eta.diffn()
res2 += vec_wspolrzedna*eta
#eta_exp = elt_S[1]
#forma_holo_power_series += vec_wspolrzedna*eta_exp
forms += [(res1, res2)]
return forms
def holomorphic_combinations_fcts(S, pole_order):
'''given a set S of (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt'''
C_AS = S[0][0].curve
p = C_AS.characteristic
F = C_AS.base_ring
prec = C_AS.prec
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
RtQ = FractionField(Rt)
minimal_valuation = min([Rt(g[1]).valuation() for g in S])
if minimal_valuation >= -pole_order:
return [s[0] for s in S]
list_of_lists = [] #to będzie lista złożona z list współczynników część nieholomorficznych rozwinięcia form z S
for eta, eta_exp in S:
a = -minimal_valuation + Rt(eta_exp).valuation()
if eta_exp !=0:
list_coeffs = a*[0] + Rt(eta_exp).list() + (-minimal_valuation)*[0]
list_coeffs = list_coeffs[:-minimal_valuation - pole_order]
else:
list_coeffs = (-minimal_valuation - pole_order)*[0]
list_of_lists += [list_coeffs]
M = matrix(F, list_of_lists)
V = M.kernel() #chcemy wyzerować części nieholomorficzne, biorąc kombinacje form z S
# Sprawdzamy, jakim formom odpowiadają elementy V.
forms = []
for vec in V.basis():
forma_holo = 0*C_AS.x
forma_holo_power_series = Rt(0)
for vec_wspolrzedna, elt_S in zip(vec, S):
eta = elt_S[0]
#eta_exp = elt_S[1]
forma_holo += vec_wspolrzedna*eta
#forma_holo_power_series += vec_wspolrzedna*eta_exp
forms += [forma_holo]
return forms
def holomorphic_combinations_forms(S, pole_order):
'''given a set S of (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt'''
C_AS = S[0][0].curve
p = C_AS.characteristic
F = C_AS.base_ring
prec = C_AS.prec
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
RtQ = FractionField(Rt)
minimal_valuation = min([Rt(g[1]).valuation() for g in S])
if minimal_valuation >= -pole_order:
return [s[0] for s in S]
list_of_lists = [] #to będzie lista złożona z list współczynników część nieholomorficznych rozwinięcia form z S
for eta, eta_exp in S:
a = -minimal_valuation + Rt(eta_exp).valuation()
list_coeffs = a*[0] + Rt(eta_exp).list() + (-minimal_valuation)*[0]
list_coeffs = list_coeffs[:-minimal_valuation - pole_order]
list_of_lists += [list_coeffs]
M = matrix(F, list_of_lists)
V = M.kernel() #chcemy wyzerować części nieholomorficzne, biorąc kombinacje form z S
# Sprawdzamy, jakim formom odpowiadają elementy V.
forms = []
for vec in V.basis():
forma_holo = 0*C_AS.dx
forma_holo_power_series = Rt(0)
for vec_wspolrzedna, elt_S in zip(vec, S):
eta = elt_S[0]
#eta_exp = elt_S[1]
forma_holo += vec_wspolrzedna*eta
#forma_holo_power_series += vec_wspolrzedna*eta_exp
forms += [forma_holo]
return forms
#print only forms that are log at the branch pts, but not holomorphic