DeRhamComputation/deRhamComputation.ipynb

16 KiB

Theory

Let $C : y^m = f(x)$. Then:

  • the basis of $H^0(C, \Omega_{C/k})$ is given by: $$x^{i-1} dx/y^j,$$ where $1 \le i \le r-1$, $1 \le j \le m-1$, $-mi + rj \ge \delta$ and $\delta := GCD(m, r)$, $r := \deg f$.

  • the above forms along with $$\lambda_{ij} = \left[ \left( \frac{\psi_{ij} , dx}{m x^{i+1} y^{m - j}}, \frac{-\phi_{ij} , dx}{m x^{i+1} y^{m - j}}, \frac{y^j}{x^i} \right) \right]$$ (where $s_{ij} = jx f'(x) - mi f(x)$, $\psi_{ij}(x) = s_{ij}^{\ge i+1}$, $\phi_{ij}(x) = s_{ij}^{< i+1}$) form a basis of $H^1_{dR}(C/K)$.

# The program computes the basis of holomorphic differentials of y^m = f(x) in char p.
# The coefficient j means that we compute the j-th eigenpart, i.e.
# forms y^j * f(x) dx. Output is [f(x), 0]

def baza_holo(m, f, j, p):
    R.<x> = PolynomialRing(GF(p))
    f = R(f)
    r = f.degree()
    delta = GCD(m, r)
    baza = {}
    k = 0
    for i in range(1, r):
        if (r*j - m*i >= delta):
            baza[k] = [x^(i-1), R(0), j]
            k = k+1
    return baza
# The program computes the basis of de Rham cohomology of y^m = f(x) in char p.
# We treat them as pairs [omega, f], where omega is regular on the affine part
# and omega - df is regular on the second atlas.
# The coefficient j means that we compute the j-th eigenpart, i.e.
# [f(x) dx/y^j, y^(m-j)*g(x)]. Output is [f(x), g(x)]

def baza_dr(m, f, j, p):
    R.<x> = PolynomialRing(GF(p))
    f = R(f)    
    r = f.degree()
    delta = GCD(m, r)
    baza = {}
    holo = baza_holo(m, f, j, p)
    for k in range(0, len(holo)):
        baza[k] = holo[k]
    
    k = len(baza)
    
    for i in range(1, r):
        if (r*(m-j) - m*i >= delta):
            s = R(m-j)*R(x)*R(f.derivative()) - R(m)*R(i)*f
            psi = R(obciecie(s, i, p))
            baza[k] = [psi, R(m)/x^i, j]
            k = k+1
    return baza
#auxiliary programs
def stopnie_bazy_holo(m, f, j, p):
    baza = baza_holo(m, f, j, p)
    stopnie = {}
    for k in range(0, len(baza)):
        stopnie[k] = baza[k][0].degree()
    return stopnie

def stopnie_bazy_dr(m, f, j, p):
    baza = baza_dr(m, f, j, p)
    stopnie = {}
    for k in range(0, len(baza)):
        stopnie[k] = baza[k][0].degree()
    return stopnie

def stopnie_drugiej_wspolrzednej_bazy_dr(m, f, j, p):
    baza = baza_dr(m, f, j, p)
    stopnie = {}
    for k in range(0, len(baza)):
        if baza[k][1] != 0:
            stopnie[k] = baza[k][1].denominator().degree()
    return stopnie

def obciecie(f, i, p):
    R.<x> = PolynomialRing(GF(p))
    f = R(f)
    coeff = f.coefficients(sparse = false)
    return sum(x^(j-i-1) * coeff[j] for j in range(i+1, f.degree() + 1))


#Any element [f dx, g] is represented as a combination of the basis vectors.

def zapis_w_bazie_dr(elt, m, f, p):
    j = elt[2]
    R.<x> = PolynomialRing(GF(p))
    RR = FractionField(R)
    f = R(f)
    r = f.degree()
    delta = GCD(m, r)
    baza = baza_dr(m, f, j, p)
    wymiar = len(baza)
    zapis = vector([GF(p)(0) for i in baza])
    stopnie = stopnie_bazy_dr(m, f, j, p)
    inv_stopnie = {v: k for k, v in stopnie.items()}
    stopnie_holo = stopnie_bazy_holo(m, f, j, p)
    inv_stopnie_holo = {v: k for k, v in stopnie_holo.items()}    
    
    ## zmiana
    if elt[0]== 0 and elt[1] == 0:
        return zapis
    
    if elt[1] == 0:
        elt[0] = R(elt[0])
        d = elt[0].degree()
        a = elt[0].coefficients(sparse = false)[d]
        k = inv_stopnie_holo[d] #ktory element bazy jest stopnia d? ten o indeksie k
    
        a1 = baza[k][0].coefficients(sparse = false)[d]
        elt1 = [R(0),R(0),j]
        elt1[0] = elt[0] - a/a1 * baza[k][0]
        elt1[1] = R(0)
        return zapis_w_bazie_dr(elt1, m, f, p) + vector([a/a1*GF(p)(i == k) for i in range(0, len(baza))])

    g = elt[1]
    a = wspolczynnik_wiodacy(g)
    d = -stopien_roznica(g)
    Rr = r/delta
    Mm = m/delta
    
    stopnie2 = stopnie_drugiej_wspolrzednej_bazy_dr(m, f, j, p)
    inv_stopnie2 = {v: k for k, v in stopnie2.items()}
    if (d not in stopnie2.values()):
        if d> 0:
            j1 = m-j
            elt1 = [elt[0], RR(elt[1]) - a*1/R(x^d), j]
        else:
            d1 = -d
            j1 = m-j
            elt1 = [elt[0] - a*(j1*x^(d1) * f.derivative()/m + d1*f*x^(d1 - 1)), RR(elt[1]) - a*R(x^(d1)), j]
        return zapis_w_bazie_dr(elt1, m, f, p)
    
    k = inv_stopnie2[d]
    b = wspolczynnik_wiodacy(baza[k][1])
    elt1 = [R(0), R(0), j]
    elt1[0] = elt[0] - a/b*baza[k][0]
    elt1[1] = elt[1] - a/b*baza[k][1]
    return zapis_w_bazie_dr(elt1, m, f, p) + vector([a*GF(p)(i == k) for i in range(0, len(baza))])
    
    
def zapis_w_bazie_holo(elt, m, f, p):
    j = elt[2]
    R.<x> = PolynomialRing(GF(p))
    f = R(f)    
    r = f.degree()
    delta = GCD(m, r)
    baza = baza_holo(m, f, j, p)
    wymiar = len(baza)
    zapis = vector([GF(p)(0) for i in baza])
    stopnie = stopnie_bazy_holo(m, f, j, p)
    inv_stopnie = {v: k for k, v in stopnie.items()}
    
    if elt[0] == 0:
        return zapis
    
    d = elt[0].degree()
    a = elt[0].coefficients(sparse = false)[d]
    
    k = inv_stopnie[d] #ktory element bazy jest stopnia d? ten o indeksie k
    
    a1 = baza[k][0].coefficients(sparse = false)[d]
    elt1 = [R(0),R(0), j]
    elt1[0] = elt[0] - a/a1 * baza[k][0]
    
    return zapis_w_bazie_holo(elt1, m, f, p) + vector([a/a1 * GF(p)(i == k) for i in range(0, len(baza))])

We have: $V(\omega, f) = (C(\omega), 0)$ and $F(\omega, f) = (0, f^p)$, where C denotes the Cartier operator. Moreover:

let $t = multord_m(p)$, $M := (p^t - 1)/m$. Then: $y^{p^t - 1} = f(x)^M$ and $1/y = f(x)^M/y^{p^t}$. Thus:

$$ C(P(x) , dx / y^j) = C(P(x) , f(x)^{M \cdot j} , dx /y^{p^t \cdot j}) = \frac{1}{y^{p^{t - 1} \cdot j}} C(P(x) , f(x)^{M \cdot j} , dx) = \frac{1}{y^{(p^{t - 1} \cdot j) , mod , m}} \cdot \frac{1}{f(x)^{[p^{t - 1} \cdot j/m]}} \cdot C(P(x) , f(x)^{M \cdot j} , dx)$$

def czesc_wielomianu(p, h):
    R.<x> = PolynomialRing(GF(p))
    h = R(h)
    wynik = R(0)
    for i in range(0, h.degree()+1):
        if (i%p) == p-1:
            potega = Integer((i-(p-1))/p)
            wynik = wynik + Integer(h[i]) * x^(potega)    
    return wynik

def cartier_dr(p, m, f, elt, j): #Cartier na y^m = f dla elt = [forma rozniczkowa, fkcja]
    R.<x> = PolynomialRing(GF(p))
    f = R(f)
    r = f.degree()
    delta = GCD(m, r)
    rzad = Integers(m)(p).multiplicative_order()
    M = Integer((p^(rzad)-1)/m)
    W = R(elt[0])
    h = R(W*f^(M*j))
    B = floor(p^(rzad-1)*j/m)
    g = czesc_wielomianu(p, h)/f^B
    jj = (p^(rzad-1)*j)%m
    #jj = Integers(m)(j/p)
    return [g, 0, jj] #jest to w czesci indeksowanej jj

def macierz_cartier_dr(p, m, f, j):
    baza = baza_dr(m, f, j, p)
    A = matrix(GF(p), len(baza), len(baza))
    for k in range(0, len(baza)):
        cart = cartier_dr(p, m, f, baza[k], j)
        v = zapis_w_bazie_dr(cart, m, f, p)
        A[k, :] = matrix(v)
    return A.transpose()

$F((\omega, P(x) \cdot y^j)) = (0, P(x)^p \cdot y^{p \cdot j}) = (0, P(x)^p \cdot f(x)^{[p \cdot j/m]} \cdot y^{(p \cdot j) , mod , m})$

def frobenius_dr(p, m, f, elt, j): #Cartier na y^m = f dla elt = [forma rozniczkowa, fkcja]
    R.<x> = PolynomialRing(GF(p))
    RR = FractionField(R)
    f = R(f)
    j1 = m-j
    M = floor(j1*p/m)
    return [0, f^M * RR(elt[1])^p, (j1*p)%m] #eigenspace = j1*p mod m

def macierz_frob_dr(p, m, f, j):
    baza = baza_dr(m, f, j, p)
    A = matrix(GF(p), len(baza), len(baza))
    for k in range(0, len(baza)):
        frob = frobenius_dr(p, m, f, baza[k], j)
        v = zapis_w_bazie_dr(frob, m, f, p)
        A[k, :] = matrix(v)
    return A.transpose()

def wspolczynnik_wiodacy(f):
    R.<x> = PolynomialRing(GF(p))
    RR = FractionField(R)
    f = RR(f)
    f1 = f.numerator()
    f2 = f.denominator()
    d1 = f1.degree()
    d2 = f2.degree()
    a1 = f1.coefficients(sparse = false)[d1]
    a2 = f2.coefficients(sparse = false)[d2]
    return(a1/a2)

def stopien_roznica(f):
    R.<x> = PolynomialRing(GF(p))
    RR = FractionField(R)
    f = RR(f)
    f1 = f.numerator()
    f2 = f.denominator()
    d1 = f1.degree()
    d2 = f2.degree()
    return(d1 - d2)

def czy_w_de_rhamie(elt, m, f, j, p):
    j1 = m - j
    R.<x> = PolynomialRing(GF(p))
    RR = FractionField(R)
    f = R(f)
    elt = [RR(elt[0]), RR(elt[1])]
    auxiliary = elt[0] - j1/m*elt[1]*f.derivative() - f*elt[1].derivative()
    deg = stopien_roznica(auxiliary)
    
    r = f.degree()
    delta = GCD(r, m)
    Rr = r/delta
    Mm = m/delta
    return(j*Rr - deg*Mm >= 0)

def full_cartier(m, f, p):
    R.<x> = PolynomialRing(GF(p))
    f = R(f)
    r = f.degree()
    delta = GCD(m, r)
    g = 1/2*((m-1)*(r-1) - delta)
    print(g)
    
    wymiary = [0]+[len(baza_holo(m, f, j, p)) for j in range(1, m)]
    print(wymiary)
    for j1 in range(1, m):
        for j2 in range(1, m):
            print(j1, j2)
            print(matrix(GF(p), wymiary[j1], wymiary[j2]))
    lista = [[matrix(GF(p), wymiary[j1], wymiary[j2]) for j1 in range(0, m)] for j2 in range(0, m)]
    rzad = Integers(m)(p).multiplicative_order()
    
    for j in range(1, m):
        jj = (p^(rzad-1)*j)%m
        print(j, jj)
        print('wymiary', macierz_cartier_dr(p, m, f, j).dimensions(), wymiary[j], wymiary[jj])
        lista[j][jj] = macierz_cartier_dr(p, m, f, j)
    return lista    
    return block_matrix(lista)
m = 4
p = 5
f = x^3 + x+2
lista = full_cartier(m, f, p)
5/2
[0, 0, 1, 2]
1 1
[]
1 2
[]
1 3
[]
2 1
[]
2 2
[0]
2 3
[0 0]
3 1
[]
3 2
[0]
[0]
3 3
[0 0]
[0 0]
1 1
wymiary (2, 2) 0 0
2 2
wymiary (2, 2) 1 1
3 3
wymiary (2, 2) 2 2
lista[2]
[
        [2 3]  [0]
[], [], [0 0], [0]
]
macierz_cartier_dr(p, m, f, 1)
[0 0]
[0 0]
baza_dr(m, f, 0, p)
{0: [3*x, 4/x, 0], 1: [4, 4/x^2, 0]}
p = 5
R.<x> = PolynomialRing(GF(p))
f = x^3 + x + 2
m = 7
baza_dr(m, f, 3, p)
{0: [1, 0, 3], 1: [0, 2/x, 3]}