2024-10-18 14:57:27 +02:00
% !TeX spellcheck = en_GB
\RequirePackage [l2tabu, orthodox] { nag}
\documentclass [a4paper,12pt] { amsart}
%\usepackage[margin=32mm,bottom=40mm]{geometry}
%\renewcommand{\baselinestretch}{1.1}
\usepackage { microtype}
\usepackage [charter] { mathdesign}
\let \circledS \undefined
%
\usepackage [T1] { fontenc}
\usepackage { tikz, tikz-cd, stmaryrd, amsmath, amsthm, amssymb,
hyperref, bbm, mathtools, mathrsfs}
%\usepackage{upgreek}
\newcommand { \upomega } { \boldsymbol { \omega } }
\newcommand { \upeta } { \boldsymbol { \eta } }
\newcommand { \dd } { \boldsymbol { d} }
\usepackage [shortlabels] { enumitem}
\usetikzlibrary { arrows}
\usetikzlibrary { positioning}
\usepackage [utf8x] { inputenc}
% \usepackage[MeX]{polski}
\newcommand { \bb } { \textbf }
\newcommand { \uu } { \underline }
\newcommand { \ol } { \overline }
\newcommand { \mc } { \mathcal }
\newcommand { \wh } { \widehat }
\newcommand { \wt } { \widetilde }
\newcommand { \mf } { \mathfrak }
\newcommand { \ms } { \mathscr }
\renewcommand { \AA } { \mathbb { A} }
\newcommand { \II } { \mathbb { I} }
\newcommand { \HH } { \mathbb { H} }
\newcommand { \ZZ } { \mathbb { Z} }
\newcommand { \CC } { \mathbb { C} }
\newcommand { \RR } { \mathbb { R} }
\newcommand { \PP } { \mathbb { P} }
\newcommand { \QQ } { \mathbb { Q} }
\newcommand { \LL } { \mathbb { L} }
\newcommand { \NN } { \mathbb { N} }
\newcommand { \FF } { \mathbb { F} }
\newcommand { \VV } { \mathbb { V} }
\newcommand { \ddeg } { \textbf { deg} \, }
\DeclareMathOperator { \SSh } { -Sh}
\DeclareMathOperator { \Ind } { Ind}
\DeclareMathOperator { \pr } { pr}
\DeclareMathOperator { \tr } { tr}
\DeclareMathOperator { \Sh } { Sh}
\DeclareMathOperator { \diag } { diag}
\DeclareMathOperator { \sgn } { sgn}
\DeclareMathOperator { \Divv } { Div}
\DeclareMathOperator { \Coind } { Coind}
\DeclareMathOperator { \coker } { coker}
\DeclareMathOperator { \im } { im}
\DeclareMathOperator { \id } { id}
\DeclareMathOperator { \Tot } { Tot}
\DeclareMathOperator { \Span } { Span}
\DeclareMathOperator { \res } { res}
\DeclareMathOperator { \Gl } { Gl}
\DeclareMathOperator { \Sl } { Sl}
\DeclareMathOperator { \GCD } { GCD}
\DeclareMathOperator { \ord } { ord}
\DeclareMathOperator { \Spec } { Spec}
\DeclareMathOperator { \rank } { rank}
\DeclareMathOperator { \Gal } { Gal}
\DeclareMathOperator { \Proj } { Proj}
\DeclareMathOperator { \Ext } { Ext}
\DeclareMathOperator { \Hom } { Hom}
\DeclareMathOperator { \End } { End}
\DeclareMathOperator { \cha } { char}
\DeclareMathOperator { \Cl } { Cl}
\DeclareMathOperator { \Jac } { Jac}
\DeclareMathOperator { \Lie } { Lie}
\DeclareMathOperator { \GSp } { GSp}
\DeclareMathOperator { \Sp } { Sp}
\DeclareMathOperator { \Sym } { Sym}
\DeclareMathOperator { \qlog } { qlog}
\DeclareMathOperator { \Aut } { Aut}
\DeclareMathOperator { \divv } { div}
\DeclareMathOperator { \mmod } { -mod}
\DeclareMathOperator { \ev } { ev}
\DeclareMathOperator { \Indec } { Indec}
\DeclareMathOperator { \pole } { pole}
\theoremstyle { plain}
\newtheorem { Theorem} { Theorem} [section]
\newtheorem * { mainthm} { Main Theorem}
\newtheorem { Remark} [Theorem]{ Remark}
\newtheorem { Lemma} [Theorem]{ Lemma}
\newtheorem { Corollary} [Theorem]{ Corollary}
\newtheorem { Conjecture} [Theorem]{ Conjecture}
\newtheorem { Proposition} [Theorem]{ Proposition}
\newtheorem { Setup} [Theorem]{ Setup}
\newtheorem { Example} [Theorem]{ Example}
\newtheorem { manualtheoreminner} { Theorem}
\newenvironment { manualtheorem} [1]{ %
\renewcommand \themanualtheoreminner { #1} %
\manualtheoreminner
} { \endmanualtheoreminner }
\newtheorem { Question} [Theorem]{ Question}
\theoremstyle { definition}
\newtheorem { Definition} [Theorem]{ Definition}
%\theoremstyle{remark}
\renewcommand { \thetable } { \arabic { section} .\arabic { Theorem} }
%\usepackage{refcheck}
\numberwithin { equation} { section}
\hyphenation { Woj-ciech}
%opening
\begin { document}
\title [The de Rham...] { ?? The de Rham cohomology of covers\\ with cyclic $ p $ -Sylow subgroup}
\author [A. Kontogeorgis and J. Garnek] { Aristides Kontogeorgis and J\k { e} drzej Garnek}
\address { ???}
\email { jgarnek@amu.edu.pl}
\subjclass [2020] { Primary 14G17, Secondary 14H30, 20C20}
\keywords { de~Rham cohomology, algebraic curves, group actions,
characteristic~$ p $ }
\urladdr { http://jgarnek.faculty.wmi.amu.edu.pl/}
\date { }
\begin { abstract}
????
\end { abstract}
\maketitle
\bibliographystyle { plain}
%
\section { Introduction}
%
\begin { mainthm}
Suppose that $ G $ is a group with a $ p $ -cyclic Sylow subgroup.
Let $ X $ be a curve with an action of~$ G $ over a field $ k $ of characteristic $ p $ .
The $ k [ G ] $ -module structure of $ H ^ 1 _ { dR } ( X ) $ is uniquely determined by the lower ramification groups and the fundamental characters of closed
points $ x $ of $ X $ that are ramified in the cover $ X \to X / G $ .
\end { mainthm}
\section { Cyclic covers}
%
Let for any $ \ZZ / p ^ n $ -cover $ X \to Y $
%
\begin { align*}
u_ { X/Y, P} ^ { (t)} & := \min \{ t \ge 0 : G_ P^ { (t)} \cong \ZZ /p^ { n-t} \} ,\\
l_ { X/Y, P} ^ { (t)} & := \min \{ t \ge 0 : G_ { P, t} \cong \ZZ /p^ { n-t} \} .
\end { align*}
%
Note that if $ G _ P = \ZZ / p ^ n $ , this coincides with the standard definition of
the $ t $ th upper (resp. lower) ramification jump of $ X \to Y $ at $ P $ .
%
\begin { Theorem} \label { thm:cyclic_ de_ rham}
Suppose that $ \pi : X \to Y $ is a $ \ZZ / p ^ n $ -cover. Let $ \langle G _ P : P \in X ( k ) \rangle = \ZZ / p ^ m = G _ { P _ 0 } $ for $ P _ 0 \in X ( k ) $ . Then, as $ k [ \ZZ / p ^ n ] $ -modules:
%
\[
2024-10-22 16:46:30 +02:00
H^ 1_ { dR} (X) \cong J_ { p^ n} ^ { 2 (g_ Y - 1)} \oplus J_ { p^ n - p^ { n-m} + 1} ^ 2 \oplus \bigoplus _ { \substack { P \in X(k)\\ P \neq P_ 0} } J_ { p^ n - p^ n/e_ P} ^ 2
\oplus \bigoplus _ { P \in X(k)} \bigoplus _ { t = 0} ^ { n-1} J_ { p^ n - p^ t} ^ { u_ { P} ^ { (t+1)} - u_ { P} ^ { (t)} } ,
2024-10-18 14:57:27 +02:00
\]
%
where $ e _ P : = e _ { X / Y, P } $ and $ u _ P ^ { ( t ) } : = u _ { X / Y, P } ^ { ( t ) } $ .
\end { Theorem}
%
Write $ H : = \langle \sigma \rangle \cong \ZZ / p ^ n $ .
For any $ k [ H ] $ -module $ M $ denote:
%
\begin { align*}
M^ { (i)} & := \ker ((\sigma - 1)^ i : M \to M),\\
T^ i M & = T^ i_ H M := M^ { (i)} /M^ { (i-1)} \quad \textrm { for } i = 1, \ldots , p^ n.
\end { align*}
%
Recall that $ \dim _ k T ^ i M $ determines the structure of $ M $ completely (cf. ????).
In the inductive step we use also the group $ H' : = \ZZ / p ^ { n - 1 } $ . In this case
we denote the irreducible $ k [ H' ] $ -modules by $ \mc J _ 1 , \ldots , \mc J _ { p ^ { n - 1 } } $
and $ \mc T ^ i M : = T ^ i _ { H' } M $ for any $ k [ H' ] $ -module $ M $ .\\
Note also that for $ j \ge 1 $ :
%
\[
l_ { X/Y, P} ^ { (j)} - l_ { X/Y, P} ^ { (j-1)} = \frac { 1} { p^ { j-1} } (u_ { X/Y, P} ^ { (j)} - u^ { (j-1)} _ { X/Y, P} )
\]
%
(in particular, $ u _ { X / Y, P } ^ { ( 1 ) } = l _ { X / Y, P } ^ { ( 1 ) } $ ). Moreover, if $ X' \to Y $ is the $ \ZZ / p ^ N $ -subcover of $ X \to Y $ for $ N \le n $ then:
%
\begin { itemize}
2024-10-22 16:46:30 +02:00
\item $ u _ { X' / Y, P } ^ { ( t ) } = u _ { X / Y, P } ^ { ( t ) } $ for $ t \le N $ ,
2024-10-18 14:57:27 +02:00
2024-10-22 16:46:30 +02:00
\item $ l _ { X / X', P } ^ { ( t ) } = l _ { X / Y, P } ^ { ( t + N ) } $ for $ t \le n - N $ .
2024-10-18 14:57:27 +02:00
\end { itemize}
\begin { Lemma} \label { lem:G_ invariants_ \' { e} tale}
If the $ G $ -cover $ X \to Y $ is \' { e} tale, then the natural map
%
\[
H^ 1_ { dR} (Y) \to H^ 1_ { dR} (X)^ G
\]
%
is an isomorphism.
\end { Lemma}
\begin { proof}
????
\end { proof}
%
\begin { Lemma} \label { lem:trace_ surjective}
2024-10-22 11:01:41 +02:00
Suppose that $ G $ is a $ p $ -group.
2024-10-18 14:57:27 +02:00
If the $ G $ -cover $ X \to Y $ is totally ramified, then the map
%
\[
\tr _ { X/Y} : H^ 1_ { dR} (X) \to H^ 1_ { dR} (Y)
\]
%
is an epimorphism.
\end { Lemma}
\begin { proof}
2024-10-22 11:01:41 +02:00
%
By induction, it suffices to prove this in the case when $ G = \ZZ / p $ .
Consider the following commutative diagram:
%
\begin { center}
% https://tikzcd.yichuanshen.de/#N4Igdg9gJgpgziAXAbVABwnAlgFyxMJZABgBpiBdUkANwEMAbAVxiRGJAF9T1Nd9CKMgEYqtRizYduvbHgJFh5MfWatEIABIA9YgAoAGqQAEAHVMB5ALYwA5nQD6BgJRceIDHIGLSo6qskNHX0ATRNzaztHENcZDz55QWQAJmV-CXUtbWEHYCgAJU5DWPdPfgUUVL9xNTYdHLzCvRi3WXKkgGY0msCs4UNw0ysAY2MLJxK2xKIu6oDM+ubBkbGHFriy6ZQAFm75qVb4rwrkXbmMg84xGChbeCJQADMAJwgrJDIQHAgkZLiXt6-ajfJDbf6vd6IXZfH6IABs4MB8OBsIAHIjIQB2FFIACcGKQAFYcYhMQTEF0YUTyUoqRTyak6ZT9hpzDhnrkDAB6EKcQ4AyHQkGIYk9TJsjnAbm8-kQpBwknYsVsCWcnl8q6cIA
\begin { tikzcd}
0 \arrow [r] & { H^ 0(X, \Omega _ X)} \arrow [r] \arrow [d, "\tr_{X/Y}"] & H^ 1_ { dR} (X) \arrow [r] \arrow [d, "\tr_{X/Y}"] & { H^ 1(X, \mc O_ X)} \arrow [r] \arrow [d, "\tr_{X/Y}"] & 0 \\
0 \arrow [r] & { H^ 0(Y, \Omega _ Y)} \arrow [r] & H^ 1_ { dR} (Y) \arrow [r] & { H^ 1(Y, \mc O_ Y)} \arrow [r] & 0
\end { tikzcd}
\end { center}
%
where the rows are Hodge--de Rham exact sequences. Recall that by~\cite [Theorem~1] { Valentini_ Madan_ Automorphisms} , in this case $ H ^ 0 ( X, \Omega _ X ) $ contains
a copy of $ k [ G ] ^ { \oplus g _ Y } $ as a direct summand. Thus, since trace is injective on $ k [ G ] ^ { \oplus g _ Y } $ , the dimension
of the image of
%
\begin { equation} \label { eqn:trace_ H0_ Omega}
\tr _ { X/Y} : H^ 0(X, \Omega _ X) \to H^ 0(Y, \Omega _ Y)
\end { equation}
%
is $ g _ Y $ . Therefore the map~\eqref { eqn:trace_ H0_ Omega} is surjective.
Similarly, by Serre's duality, also $ H ^ 1 ( X, \mc O _ X ) $ contains $ k [ G ] ^ { \oplus g _ Y } $ as a direct summand
and one shows similarly that the trace map
%
\begin { equation*} %\label{eqn:trace_H0_Omega}
\tr _ { X/Y} : H^ 1(X, \mc O_ X) \to H^ 1(Y, \mc O_ Y)
\end { equation*}
%
2024-10-22 16:46:30 +02:00
is surjective. Therefore, since the outer vertical maps in the diagram are surjective,
2024-10-22 11:01:41 +02:00
the trace map on the de Rham cohomology must be surjective as well.
%
2024-10-18 14:57:27 +02:00
\end { proof}
%
\begin { Lemma} \label { lem:TiM_ isomorphism}
For any $ i \le p ^ n - 1 $ we have the following $ k $ -linear monomorphism:
%
\[
2024-10-22 11:01:41 +02:00
m_ { \sigma - 1} : T^ { i+1} M \hookrightarrow T^ i M.
2024-10-18 14:57:27 +02:00
\]
\end { Lemma}
\begin { proof}
2024-10-22 11:01:41 +02:00
%
We define $ m _ { \sigma - 1 } $ as follows:
%
\[
m_ { \sigma - 1} (\ol x) := (\sigma - 1) \cdot x,
\]
%
where for $ \ol x \in T ^ i M $ we picked any representative $ x \in M ^ { ( i ) } $ .
2024-10-22 16:46:30 +02:00
Indeed, if $ x \in M ^ { ( i + 1 ) } : = \ker ( ( \sigma - 1 ) ^ { i + 1 } ) $ then clearly $ ( \sigma - 1 ) x \in M ^ { ( i ) } $ .
2024-10-22 11:01:41 +02:00
Moreover $ ( \sigma - 1 ) \cdot x \in M ^ { ( i - 1 ) } $ holds if and only if $ x \in M ^ { ( i ) } $ . This
shows that $ m _ { \sigma - 1 } $ is well-defined and injective.
2024-10-18 14:57:27 +02:00
\end { proof}
%
\begin { Lemma} \label { lem:lemma_ mcT_ and_ T}
Let $ M $ be a $ k [ H ] $ -module. Let $ T ^ i M $ and $ \mc T ^ i M $ be as above.
If $ \dim _ k \mc T ^ i M = \dim _ k \mc T ^ { i + 1 } M $ for some $ i $ then:
%
\[
\dim _ k T^ { pi + p} M = \dim _ k T^ { pi + p - 1} M = \ldots = \dim _ k T^ { pi - p + 1} M.
\]
\end { Lemma}
\begin { proof}
By Lemma~\ref { lem:TiM_ isomorphism} :
%
\begin { align*}
\dim _ k \mc T^ i M & = \dim _ k T^ { pi} M + \ldots + \dim _ k T^ { pi - p + 1} M\\
& \ge \dim _ k T^ { pi+p} M + \ldots + \dim _ k T^ { pi+1} M
= \dim _ k \mc T^ { i+1} M.
\end { align*}
%
Since the left-hand side and right hand side are equal, we conclude by Lemma~\ref { lem:TiM_ isomorphism}
\end { proof}
\begin { proof} [Proof of Theorem~\ref { thm:cyclic_ de_ rham} ]
We use the following notation: $ H' : = \langle \sigma ^ p \rangle \cong \ZZ / p ^ { n - 1 } $ ,
$ H'' : = H / \langle \sigma ^ { p ^ { n - 1 } } \rangle \cong \ZZ / p ^ { n - 1 } $ , $ Y' : = X / H' $ , $ X'' : = X / H'' $ .
Write also $ \mc M : = H ^ 1 _ { dR } ( X ) $ .
We consider now two cases. If the cover $ X \to Y $ is \' { e} tale, then by induction assumption, since $ 2 ( g _ { Y' } - 1 ) = p \cdot 2 \cdot ( g _ Y - 1 ) $ :
%
\[
\mc M \cong \mc J_ { p^ { n-1} } ^ { 2 p \cdot (g_ Y - 1)} \oplus k^ { \oplus 2} .
\]
%
Therefore $ \dim _ k \mc T ^ 2 \mc M = \ldots = \dim _ k \mc T ^ { p ^ { n - 1 } } \mc M = 2 p ( g _ Y - 1 ) $ ,
which by Lemma~\ref { lem:lemma_ mcT_ and_ T} implies that
%
\[
\dim _ k T^ p \mc M = \ldots = \dim _ k T^ { p^ n} \mc M = 2(g_ Y - 1).
\]
%
Thus, for $ i = 2 , \ldots , p $ :
%
\[
\dim _ k T^ i \mc M \ge 2(g_ Y - 1) = \dim _ k T^ { p+1} \mc M.
\]
%
On the other hand, by Lemma~\ref { lem:G_ invariants_ \' { e} tale} we have
%
$
\dim _ k T^ 1 \mc M = 2 g_ Y
$ . Thus:
%
\begin { align*}
\sum _ { i = 2} ^ p \dim _ k T^ i \mc M = 2g_ X - \dim _ k T^ 1 \mc M - \sum _ { i = p+1} ^ { p^ n} \dim _ k T^ i \mc M = (p-1) \cdot 2(g_ Y - 1).
\end { align*}
%
Thus $ \dim _ k T ^ i \mc M = 2 ( g _ Y - 1 ) $ for every $ i \ge 2 $ , which ends the proof in this case.
Assume now that $ X \to Y $ is not \' { e} tale. Therefore $ X \to X'' $ is also not \' { e} tale.
By induction hypothesis for $ H' $ acting on $ X $ , we have the following isomorphism of $ k [ H' ] $ -modules:
%
\[
2024-10-22 16:46:30 +02:00
\mc M \cong \mc J_ { p^ { n-1} } ^ { 2 (g_ { Y'} - 1)} \oplus \mc J_ { p^ { n-1} - p^ { n - m} + 1} ^ 2 \oplus \bigoplus _ { \substack { P \in X(k)\\ P \neq P_ 0} } \mc J_ { p^ { n-1} - p^ { n-1} /e'_ P} ^ 2
\oplus \bigoplus _ { P \in X(k)} \bigoplus _ { t = 0} ^ { n-2} \mc J_ { p^ n - p^ t} ^ { u_ { X/Y', P} ^ { (t+1)} - u_ { X/Y', P} ^ { (t)} }
2024-10-18 14:57:27 +02:00
\]
%
2024-10-22 16:46:30 +02:00
where $ e' _ P : = e _ { X / Y', P } $ . Note that
2024-10-18 14:57:27 +02:00
%
\[
2024-10-22 16:46:30 +02:00
??? p \cdot u^ { (n)} = u^ { (n-1)} + (p-1) \cdot l^ { (1)} ???.
2024-10-18 14:57:27 +02:00
\]
%
2024-10-22 16:46:30 +02:00
Therefore, for $ i \le p ^ { n - 1 } - p ^ { n - 2 } $ , using the Riemann--Hurwitz formula (cf. ????):
2024-10-18 14:57:27 +02:00
%
\begin { align*}
2024-10-22 16:46:30 +02:00
\dim _ k \mc T^ i \mc M & =
2(g_ { Y'} - 1) + 2 + 2(\# R - 1) + \sum _ { P \in X(k)} (u_ { X/Y', P} ^ { (n-1)} - 1)\\
& = 2 p (g_ Y - 1) + \sum _ { Q \in Y'(k)} (p-1) \cdot (l_ { Y'/Y, Q} ^ { (1)} + 1)\\
& + 2 + 2(\# R - 1) + \sum _ { P \in X(k)} (u_ { X/Y', P} ^ { (n-1)} - 1)\\
& = ?? p \cdot \left ( 2(g_ Y - 1) + 2 + 2(\# R - 1) + \sum _ { P \in X(k)} (u_ { X/Y, P} ^ { (n)} - 1) \right )
2024-10-18 14:57:27 +02:00
\end { align*}
%
2024-10-22 16:46:30 +02:00
where
%
\[ R : = \{ P \in X ( k ) : e _ P > 1 \} = \{ P \in X ( k ) : e' _ P > 1 \} . \]
%
2024-10-18 14:57:27 +02:00
In particular, $ \dim _ k \mc T ^ 1 \mc M = \ldots = \dim _ k \mc T ^ { p ^ { n - 1 } - p ^ { n - 2 } } \mc M $ .
Thus by Lemma~\ref { lem:lemma_ mcT_ and_ T}
%
2024-10-22 16:46:30 +02:00
\begin { align*}
\dim _ k T^ 1 \mc M & = \ldots = \dim _ k T^ { p^ n - p^ { n-1} } \mc M = \frac { 1} { p} \dim _ k \mc T^ 1 \mc M\\
& = 2(g_ Y - 1) + 2 + 2(\# R - 1) + \sum _ { P \in X(k)} (u_ { X/Y, P} ^ { (n)} - 1).
\end { align*}
2024-10-18 14:57:27 +02:00
%
By Lemma~\ref { lem:trace_ surjective} since $ X \to X'' $ is not \' { e} tale, the map $ \tr _ { X / X'' } : H ^ 1 _ { dR } ( X ) \to H ^ 1 _ { dR } ( X'' ) $ is surjective. Recall that
in $ \FF _ p [ x ] $ we have the identity:
%
\[
1 + x + \ldots + x^ { p-1} = (x - 1)^ { p-1} .
\]
%
Therefore in the group ring $ k [ H ] $ we have:
%
\[
\tr _ { X/X''} = \sum _ { j = 0} ^ { p-1} (\sigma ^ { p^ { n-1} } )^ j = (\sigma ^ { p^ { n-1} } - 1)^ { p-1} =
(\sigma - 1)^ { p^ n - p^ { n-1} } .
\]
%
This implies that:
%
\[
\ker (\tr _ { X/X''} : \mc M \to \mc M'') = \mc M^ { (p^ n - p^ { n-1} )}
\]
%
and that $ \tr _ { X / X'' } $ induces a $ k $ -linear isomorphism $ T ^ { i + p ^ n - p ^ { n - 1 } } \mc M \to \mc T ^ i \mc M'' $ for any $ i \ge 1 $ . Thus:
%
\[
\dim _ k T^ { i + p^ n - p^ { n-1} } \mc M = \dim _ k \mc T^ i \mc M'' = ....
\]
%
This ends the proof.
\end { proof}
\section { Hypoelementary covers}
%
Assume now that $ G = H \rtimes _ { \chi } C = \langle \sigma \rangle \rtimes _ { \chi } \langle \rho \rangle \cong \ZZ / p ^ n \rtimes _ { \chi } \ZZ / c $ .
2024-10-22 11:01:41 +02:00
Let $ X $ be a curve with an action of $ G $ and write $ Y : = X / H $ . For any $ k [ C ] $ -module $ M $ and any character $ \psi $ of $ H $ we write $ M ^ { \psi } : = M \otimes _ { k [ C ] } \psi $ .
2024-10-18 14:57:27 +02:00
%
\begin { Proposition} \label { prop:main_ thm_ for_ hypoelementary}
Main Theorem holds for a hypoelementary $ G $ as above and $ k = \ol k $ .
\end { Proposition}
%
\begin { Lemma}
Let $ M $ be a $ k [ G ] $ -module of finite dimension. The $ k [ G ] $ -structure of $ M $
is uniquely determined by the $ k [ C ] $ -structure of $ T ^ 1 M, \ldots , T ^ { p ^ n } M $ .
\end { Lemma}
\begin { proof}
2024-10-22 11:01:41 +02:00
See \cite [????] { Bleher_ Chinburg_ Kontogeorgis_ Galois_ structure} for a proof.
2024-10-18 14:57:27 +02:00
\end { proof}
%
\begin { Lemma} \label { lem:N+Nchi+...}
2024-10-22 11:01:41 +02:00
Keep the above notation. Let $ M $ , $ N $ be $ k [ C ] $ -modules. Assume that
2024-10-18 14:57:27 +02:00
%
\[
2024-10-22 11:01:41 +02:00
M \cong N \oplus N^ { \chi } \oplus \ldots \oplus N^ { \chi ^ { p-1} } .
2024-10-18 14:57:27 +02:00
\]
%
2024-10-22 11:01:41 +02:00
Then $ N $ is uniquely determined by $ M $ .
2024-10-18 14:57:27 +02:00
%If $p-1 | j$, then $N_1 \cong N_2^{\chi^i}$ for some $i$.
\end { Lemma}
\begin { proof}
2024-10-22 11:01:41 +02:00
Note that
%
\[
M \cong N^ { \oplus 2} \oplus N^ { \chi } \oplus N^ { \chi ^ 2} \oplus \ldots \oplus N^ { \chi ^ { p-2} } .
\]
%
By tensoring this isomorphism by $ \chi ^ i $ we obtain:
%
\begin { align*}
M^ { \chi ^ i} \cong (N^ { \chi ^ i} )^ { \oplus 2} \oplus N^ { \chi ^ { i+1} } \oplus N^ { \chi ^ { i+2} } \oplus \ldots \oplus N^ { \chi ^ { i + p-2} }
\cong (N^ { \chi ^ i} )^ { \oplus 2} \oplus \bigoplus _ { \substack { j = 0\\ j \neq i} } ^ { p-2} N^ { \chi ^ j}
\end { align*}
%
for $ i = 0 , \ldots , p - 2 $ . Therefore:
%
\begin { equation} \label { eqn:N+M=M}
N^ { \oplus p} \oplus M^ { \chi } \oplus M^ { \chi ^ 2} \oplus \ldots \oplus M^ { \chi ^ { p-2} } \oplus
\cong M^ { \oplus (p-1)} .
\end { equation}
%
Indeed, for the proof of~\eqref { eqn:N+M=M} note that
%
\begin { align*}
N^ { \oplus p} & \oplus M^ { \chi } \oplus M^ { \chi ^ 2} \oplus \ldots \oplus M^ { \chi ^ { p-2} }
\cong N^ { \oplus p} \oplus \bigoplus _ { i = 1} ^ { p-2} \left ((N^ { \chi ^ i} )^ { \oplus 2}
\oplus \bigoplus _ { \substack { j = 0\\ j \neq i} } ^ { p-2} N^ { \chi ^ j} \right )\\
& \cong \left ( N^ { \oplus 2} \oplus N^ { \chi } \oplus N^ { \chi ^ 2} \oplus \ldots \oplus N^ { \chi ^ { p-2} } \right )^ { \oplus (p-1)}
\cong M^ { \oplus (p-1)} .
\end { align*}
%
The isomorphism~\eqref { eqn:N+M=M} clearly proves the thesis.
2024-10-18 14:57:27 +02:00
\end { proof}
%
\begin { Lemma} \label { lem:TiM_ isomorphism_ hypoelementary}
2024-10-22 11:01:41 +02:00
For any $ i \le p ^ n - 1 $ the map~$ m _ { \sigma - 1 } $ from Lemma~\ref { lem:TiM_ isomorphism}
yields a $ k [ C ] $ -equivariant monomorphism:
2024-10-18 14:57:27 +02:00
%
\[
2024-10-22 11:01:41 +02:00
m_ { \sigma - 1} : T^ { i+1} M \hookrightarrow (T^ i M)^ { \chi ^ { -1} } .
2024-10-18 14:57:27 +02:00
\]
\end { Lemma}
\begin { proof}
2024-10-22 11:01:41 +02:00
By Lemma~\ref { lem:TiM_ isomorphism} this map is injective. Thus it suffices to check that it is $ k [ C ] $ -equivariant.
Note that we have the following identity in the ring~$ k [ C ] $ :
%
\[
(\sigma - 1) \cdot \rho = \rho \cdot (\sigma ^ { \chi (\rho )^ { -1} } - 1)
= \rho \cdot (\sigma - 1) \cdot (1 + \sigma + \sigma ^ 2 + \ldots + \sigma ^ { \chi (\rho )^ { -1} - 1} )
\]
%
Note that $ \sigma $ acts trivially on $ T ^ i M $ , so that for any $ \ol x \in T ^ i M $ :
%
\[
(1 + \sigma + \sigma ^ 2 + \ldots + \sigma ^ { \chi (\rho )^ { -1} - 1} ) \cdot \ol x = \chi (\rho )^ { -1} \cdot \ol x.
\]
%
This easily shows that
%
\[
m_ { \sigma - 1} (\rho \cdot \ol x) = \chi (\rho )^ { -1} \cdot \rho \cdot m_ { \sigma - 1} (\ol x),
\]
%
which ends the proof.
%
2024-10-18 14:57:27 +02:00
\end { proof}
\begin { proof} [Proof of Proposition~\ref { prop:main_ thm_ for_ hypoelementary} ]
We prove this by induction on $ n $ . If $ n = 0 $ , then it follows by Chevalley--Weil theorem.
Consider now two cases. Firstly, we assume that $ X \to Y $ is \' { e} tale.
Recall that by proof of Theorem~\ref { thm:cyclic_ de_ rham} , the map $ ( \sigma - 1 ) $
is an isomorphism of $ k $ -vector spaces between $ T ^ { i + 1 } \mc M $ and $ T ^ i \mc M $ for
$ i = 2 , \ldots , p ^ n $ . This yields an isomorphism of $ k [ C ] $ -modules for $ i \ge 2 $ by Lemma~\ref { lem:TiM_ isomorphism_ hypoelementary} :
%
\begin { equation} \label { eqn:TiM=T1M_ chi_ \' { e} tale}
T^ i \mc M \cong (T^ 2 \mc M)^ { \chi ^ { -i+2} }
\end { equation}
%
Observe that $ \mc T ^ i \mc M $ has the filtration $ \mc M ^ { ( pi ) } \supset \mc M ^ { ( pi - 1 ) } \supset \ldots \supset \mc M ^ { ( pi - p ) } $ with subquotients $ T ^ { pi } \mc M, \ldots , T ^ { pi - p } \mc M $ .
Thus, since the category of $ k [ C ] $ -modules is semisimple, for $ i \le p ^ n - p ^ { n - 1 } $ :
%
\begin { align*}
\mc T^ i \mc M & \cong
\begin { cases}
2024-10-22 11:01:41 +02:00
T^ 1 \mc M \oplus T^ 2 \mc M \oplus (T^ 2 \mc M)^ { \chi ^ { -1} } \oplus \ldots \oplus (T^ 2 \mc M)^ { \chi ^ { -(p - 2)} } , & i = 1\\
T^ 2 \mc M \oplus \ldots \oplus (T^ 2 \mc M)^ { \chi ^ { -(p-1)} } , & i > 1.
2024-10-18 14:57:27 +02:00
\end { cases}
\end { align*}
%
Thus, since by induction hypothesis $ \mc T ^ 2 \mc M $ is determined by ramification data,
we have by Lemma~\ref { lem:N+Nchi+...} that $ T ^ 2 \mc M $ is determined by ramification data.
Moreover, by Lemma~\ref { lem:G_ invariants_ \' { e} tale} and induction hypothesis, $ T ^ 1 \mc M \cong H ^ 1 _ { dR } ( X'' ) $
2024-10-22 11:01:41 +02:00
is also determined by ramification data.
2024-10-18 14:57:27 +02:00
Assume now that $ X \to Y $ is not \' { e} tale. Analogously as in the previous case, Lemma~\ref { lem:TiM_ isomorphism_ hypoelementary} and proof of Theorem~\ref { thm:cyclic_ de_ rham}
yield an isomorphism of $ k [ C ] $ -modules:
%
\begin { equation} \label { eqn:TiM=T1M_ chi}
T^ { i+1} \mc M \cong (T^ 1 \mc M)^ { \chi ^ { -i} }
\end { equation}
%
for $ i \le p ^ n - p ^ { n - 1 } $ . Observe that $ \mc T ^ i M $ has the filtration $ \mc M ^ { ( pi ) } \supset \mc M ^ { ( pi - 1 ) } \supset \ldots \supset \mc M ^ { ( pi - p ) } $ with subquotients $ T ^ { pi } \mc M, \ldots , T ^ { pi - p + 1 } \mc M $ .
Thus, since the category of $ k [ C ] $ -modules is semisimple, for $ i \le p ^ n - p ^ { n - 1 } $ :
%
\begin { align*}
\mc T^ i \mc M & \cong T^ { pi - p + 1} \mc M \oplus \ldots \oplus T^ { pi} \mc M\\
& \cong T^ 1 \mc M \oplus (T^ 1 \mc M)^ { \chi ^ { -1} } \oplus \ldots \oplus
(T^ 1 \mc M)^ { \chi ^ { -p} } .
\end { align*}
%
By induction assumption, the $ k [ C ] $ -module structure of $ \mc T ^ i \mc M $ is uniquely determined by the ramification data. Thus, by Lemma~\ref { lem:N+Nchi+...} for $ N : = T ^ 1 \mc M $ and by~\eqref { eqn:TiM=T1M_ chi} the $ k [ C ] $ -structure of the modules $ T ^ i \mc M $ is uniquely determined by the ramification data for $ i \le p ^ n - p ^ { n - 1 } $ .
By similar reasoning, $ \tr _ { X / X' } $ yields an isomorphism:
%
\[
T^ { i + p^ n - p^ { n-1} } \mc M \cong (\mc T^ i \mc M'')^ { \chi ^ { -1??} } .
\]
%
Thus, by induction hypothesis for $ \mc M'' $ , the $ k [ C ] $ -structure of $ T ^ { i + p ^ n - p ^ { n - 1 } } \mc M $
is determined by ramification data as well.
\end { proof}
\section { Proof of Main Theorem}
%
(Conlon induction ???) (algebraic closure ???)
\bibliography { bibliografia}
2024-10-17 13:22:42 +02:00
\end { document}