relation between jumps
This commit is contained in:
parent
2a54cefac7
commit
2446de0dd4
Binary file not shown.
@ -133,8 +133,15 @@ hyperref, bbm, mathtools, mathrsfs}
|
|||||||
%
|
%
|
||||||
\section{Cyclic covers}
|
\section{Cyclic covers}
|
||||||
%
|
%
|
||||||
Let $u_{X/Y, P}^{(t)}$ (resp. $l_{X/Y, P}^{(t)}$) denote the $t$th upper (resp. lower)
|
Let for any $\ZZ/p^n$-cover $X \to Y$
|
||||||
ramification jump of $X \to Y$ at $P$.
|
%
|
||||||
|
\begin{align*}
|
||||||
|
u_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_P^{(t)} \cong \ZZ/p^{n-t???} \},\\
|
||||||
|
l_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_{P, t} \cong \ZZ/p^{n-t???} \}.
|
||||||
|
\end{align*}
|
||||||
|
%
|
||||||
|
Note that if $G_P = \ZZ/p^n$, this coincides with the standard definition of
|
||||||
|
the $t$th upper (resp. lower) ramification jump of $X \to Y$ at $P$.
|
||||||
%
|
%
|
||||||
\begin{Theorem}
|
\begin{Theorem}
|
||||||
Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $\langle G_P : P \in X(k) \rangle = \ZZ/p^m = G_{P_0}$ for $P_0 \in X(k)$. Then, as $k[\ZZ/p^n]$-modules:
|
Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $\langle G_P : P \in X(k) \rangle = \ZZ/p^m = G_{P_0}$ for $P_0 \in X(k)$. Then, as $k[\ZZ/p^n]$-modules:
|
||||||
@ -158,6 +165,21 @@ In the inductive step we use also the group $\ZZ/p^{n-1}$. In this case
|
|||||||
we denote the irreducible $k[\ZZ/p^{n-1}]$-modules by $\mc J_1, \ldots, \mc J_{p^{n-1}}$
|
we denote the irreducible $k[\ZZ/p^{n-1}]$-modules by $\mc J_1, \ldots, \mc J_{p^{n-1}}$
|
||||||
and $\mc T^i M := T^i_{\ZZ/p^{n-1}} M$ for any $k[\ZZ/p^{n-1}]$-module $M$.
|
and $\mc T^i M := T^i_{\ZZ/p^{n-1}} M$ for any $k[\ZZ/p^{n-1}]$-module $M$.
|
||||||
|
|
||||||
|
Note also that for $j \ge 1$:
|
||||||
|
%
|
||||||
|
\[
|
||||||
|
l_{X/Y, P}^{(j)} - l_{X/Y, P}^{(j-1)} = \frac{1}{p^{j-1}} (u_{X/Y, P}^{(j)} - u^{(j-1)}_{X/Y, P})
|
||||||
|
\]
|
||||||
|
%
|
||||||
|
(in particular, $u_{X/Y, P}^{(1)} = l_{X/Y, P}^{(1)}$). Moreover, if $X' \to Y$ is the $\ZZ/p^N$-subcover of $X \to Y$ for $N \le n$ then:
|
||||||
|
%
|
||||||
|
\begin{itemize}
|
||||||
|
\item $u_{X'/Y, P}^{(t)} = u_{X'/Y, P}^{(t)}$ for $t \le N$,
|
||||||
|
|
||||||
|
\item $l_{X/X', P}^{(t)} = l_{X/X', P}^{(t + N)}$ for $t \le n-N$.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
\begin{Lemma}
|
\begin{Lemma}
|
||||||
If the $G$-cover $X \to Y$ is \'{e}tale, then the natural map
|
If the $G$-cover $X \to Y$ is \'{e}tale, then the natural map
|
||||||
%
|
%
|
||||||
@ -192,10 +214,20 @@ and $\mc T^i M := T^i_{\ZZ/p^{n-1}} M$ for any $k[\ZZ/p^{n-1}]$-module $M$.
|
|||||||
By induction hypothesis for $H'$ acting on $X$, we have the following isomorphism of $k[H']$-modules:
|
By induction hypothesis for $H'$ acting on $X$, we have the following isomorphism of $k[H']$-modules:
|
||||||
%
|
%
|
||||||
\[
|
\[
|
||||||
M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n-m ??} + 1}^2 \oplus \bigoplus_{P \neq P_0} \mc J_{p^n - \frac{p^{n-1}}{e_{X/Y', P}}}^2
|
M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - 1 -m'} + 1}^2 \oplus \bigoplus_{P \neq P_0} \mc J_{p^n - \frac{p^{n-1}}{e_{X/Y', P}}}^2
|
||||||
\oplus \bigoplus_P \bigoplus_{t = 0}^{n-1} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}}
|
\oplus \bigoplus_P \bigoplus_{t = 0}^{n-1} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}}
|
||||||
\]
|
\]
|
||||||
%
|
%
|
||||||
|
where
|
||||||
|
%
|
||||||
|
\[
|
||||||
|
m' :=
|
||||||
|
\begin{cases}
|
||||||
|
n-1, & \textrm{ if } m = n,\\
|
||||||
|
n, & \textrm{ otherwise.}
|
||||||
|
\end{cases}
|
||||||
|
\]
|
||||||
|
|
||||||
Therefore, for $???$
|
Therefore, for $???$
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
|
Loading…
Reference in New Issue
Block a user