monday 9.12. pt 1
This commit is contained in:
parent
f26f5a166a
commit
262535f385
@ -753,6 +753,22 @@ Let $X$ be a curve with an action of $G$ and write $Y := X/H$. For any $k[C]$-mo
|
|||||||
%
|
%
|
||||||
\section{Examples}
|
\section{Examples}
|
||||||
%
|
%
|
||||||
|
Assume that $G$ is a group with a normal $p$-Sylow subgroup $H$ of order $p$. Let $C := G/H$. Then $G = H \rtimes_{\chi} C$
|
||||||
|
for a homomorphism $\chi : C \to \FF_p^{\times}$.
|
||||||
|
%
|
||||||
|
\begin{Proposition}
|
||||||
|
Keep the above notation. If $G$ acts on a curve $X$ and the cover $X \to X/H$ is not \'{e}tale, then:
|
||||||
|
%
|
||||||
|
\[
|
||||||
|
H^1_{dR}(X) \cong \bigoplus_{M \in \Indec(C)} \mc V(M, p-1)^{\oplus b_M} \oplus \mc V(M, p)^{\oplus c_M},
|
||||||
|
\]
|
||||||
|
%
|
||||||
|
where $b_M := \ldots$, $c_M := \ldots$.
|
||||||
|
\end{Proposition}
|
||||||
|
\begin{proof}
|
||||||
|
???
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\noindent Let $p > 2$. Consider the Mumford curve
|
\noindent Let $p > 2$. Consider the Mumford curve
|
||||||
%
|
%
|
||||||
\[
|
\[
|
||||||
|
Loading…
Reference in New Issue
Block a user