monday 9.12. pt 1

This commit is contained in:
jgarnek 2024-12-09 15:38:21 +01:00
parent f26f5a166a
commit 262535f385

View File

@ -753,6 +753,22 @@ Let $X$ be a curve with an action of $G$ and write $Y := X/H$. For any $k[C]$-mo
% %
\section{Examples} \section{Examples}
% %
Assume that $G$ is a group with a normal $p$-Sylow subgroup $H$ of order $p$. Let $C := G/H$. Then $G = H \rtimes_{\chi} C$
for a homomorphism $\chi : C \to \FF_p^{\times}$.
%
\begin{Proposition}
Keep the above notation. If $G$ acts on a curve $X$ and the cover $X \to X/H$ is not \'{e}tale, then:
%
\[
H^1_{dR}(X) \cong \bigoplus_{M \in \Indec(C)} \mc V(M, p-1)^{\oplus b_M} \oplus \mc V(M, p)^{\oplus c_M},
\]
%
where $b_M := \ldots$, $c_M := \ldots$.
\end{Proposition}
\begin{proof}
???
\end{proof}
\noindent Let $p > 2$. Consider the Mumford curve \noindent Let $p > 2$. Consider the Mumford curve
% %
\[ \[