chevalley weil for de Rham 2 false
This commit is contained in:
parent
d9c360a8f5
commit
8895209e2d
Binary file not shown.
@ -233,6 +233,7 @@ $\mc V(M, i)$ for the $k[G]$-module corresponding to a pair $(M, i) \in \Indec(k
|
|||||||
|
|
||||||
Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, denote by $\chi_e$ the primitive character of a cyclic group of order $e$.
|
Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, denote by $\chi_e$ the primitive character of a cyclic group of order $e$.
|
||||||
%
|
%
|
||||||
|
{\color{red}
|
||||||
\begin{Proposition} \label{prop:chevalley_weil}
|
\begin{Proposition} \label{prop:chevalley_weil}
|
||||||
Keep the above notation and assume that $p \nmid \# G$. Then:
|
Keep the above notation and assume that $p \nmid \# G$. Then:
|
||||||
%
|
%
|
||||||
@ -255,13 +256,8 @@ Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, de
|
|||||||
H^1_{dR}(X) \cong k[G]^{\oplus 2g_X - 2} \oplus k^{\oplus 2}.
|
H^1_{dR}(X) \cong k[G]^{\oplus 2g_X - 2} \oplus k^{\oplus 2}.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
where:
|
|
||||||
%
|
|
||||||
\begin{align*}
|
|
||||||
a_W^{dR} := 2 (g_Y - 1) \cdot \dim_k W + \sum_{Q \in Y(k)} (e_{X/Y, Q} - 1) \cdot \dim_k W + 2 \cdot \llbracket W \cong k \rrbracket,
|
|
||||||
\end{align*}
|
|
||||||
\end{Corollary}
|
\end{Corollary}
|
||||||
|
}
|
||||||
|
|
||||||
\section{Cyclic covers}
|
\section{Cyclic covers}
|
||||||
%
|
%
|
||||||
|
Loading…
Reference in New Issue
Block a user