chevalley weil for de Rham 2 false

This commit is contained in:
jgarnek 2024-12-10 19:01:24 +01:00
parent d9c360a8f5
commit 8895209e2d
2 changed files with 2 additions and 6 deletions

Binary file not shown.

View File

@ -233,6 +233,7 @@ $\mc V(M, i)$ for the $k[G]$-module corresponding to a pair $(M, i) \in \Indec(k
Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, denote by $\chi_e$ the primitive character of a cyclic group of order $e$. Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, denote by $\chi_e$ the primitive character of a cyclic group of order $e$.
% %
{\color{red}
\begin{Proposition} \label{prop:chevalley_weil} \begin{Proposition} \label{prop:chevalley_weil}
Keep the above notation and assume that $p \nmid \# G$. Then: Keep the above notation and assume that $p \nmid \# G$. Then:
% %
@ -255,13 +256,8 @@ Finally, we recall the classical Chevalley-Weil formula. For any $e \in \NN$, de
H^1_{dR}(X) \cong k[G]^{\oplus 2g_X - 2} \oplus k^{\oplus 2}. H^1_{dR}(X) \cong k[G]^{\oplus 2g_X - 2} \oplus k^{\oplus 2}.
\end{equation} \end{equation}
% %
where:
%
\begin{align*}
a_W^{dR} := 2 (g_Y - 1) \cdot \dim_k W + \sum_{Q \in Y(k)} (e_{X/Y, Q} - 1) \cdot \dim_k W + 2 \cdot \llbracket W \cong k \rrbracket,
\end{align*}
\end{Corollary} \end{Corollary}
}
\section{Cyclic covers} \section{Cyclic covers}
% %