pf for hypoelementary
This commit is contained in:
parent
00c319f4c0
commit
c44ac3b620
@ -1,4 +1,5 @@
|
||||
\BOOKMARK [1][-]{section.1}{\376\377\0001\000.\000\040\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{}% 1
|
||||
\BOOKMARK [1][-]{section.2}{\376\377\0002\000.\000\040\000C\000y\000c\000l\000i\000c\000\040\000c\000o\000v\000e\000r\000s}{}% 2
|
||||
\BOOKMARK [1][-]{section.3}{\376\377\0003\000.\000\040\000H\000y\000p\000o\000e\000l\000e\000m\000e\000n\000t\000a\000r\000y\000\040\000c\000o\000v\000e\000r\000s}{}% 3
|
||||
\BOOKMARK [1][-]{section*.1}{\376\377\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{}% 4
|
||||
\BOOKMARK [1][-]{section.4}{\376\377\0004\000.\000\040\000P\000r\000o\000o\000f\000\040\000o\000f\000\040\000M\000a\000i\000n\000\040\000T\000h\000e\000o\000r\000e\000m}{}% 4
|
||||
\BOOKMARK [1][-]{section*.1}{\376\377\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{}% 5
|
||||
|
Binary file not shown.
@ -143,14 +143,14 @@ hyperref, bbm, mathtools, mathrsfs}
|
||||
Let for any $\ZZ/p^n$-cover $X \to Y$
|
||||
%
|
||||
\begin{align*}
|
||||
u_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_P^{(t)} \cong \ZZ/p^{n-t???} \},\\
|
||||
l_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_{P, t} \cong \ZZ/p^{n-t???} \}.
|
||||
u_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_P^{(t)} \cong \ZZ/p^{n-t} \},\\
|
||||
l_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_{P, t} \cong \ZZ/p^{n-t} \}.
|
||||
\end{align*}
|
||||
%
|
||||
Note that if $G_P = \ZZ/p^n$, this coincides with the standard definition of
|
||||
the $t$th upper (resp. lower) ramification jump of $X \to Y$ at $P$.
|
||||
%
|
||||
\begin{Theorem}
|
||||
\begin{Theorem} \label{thm:cyclic_de_rham}
|
||||
Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $\langle G_P : P \in X(k) \rangle = \ZZ/p^m = G_{P_0}$ for $P_0 \in X(k)$. Then, as $k[\ZZ/p^n]$-modules:
|
||||
%
|
||||
\[
|
||||
@ -187,7 +187,7 @@ Note also that for $j \ge 1$:
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\begin{Lemma}
|
||||
\begin{Lemma} \label{lem:G_invariants_etale}
|
||||
If the $G$-cover $X \to Y$ is \'{e}tale, then the natural map
|
||||
%
|
||||
\[
|
||||
@ -200,7 +200,7 @@ Note also that for $j \ge 1$:
|
||||
????
|
||||
\end{proof}
|
||||
%
|
||||
\begin{Lemma}
|
||||
\begin{Lemma} \label{lem:trace_surjective}
|
||||
If the $G$-cover $X \to Y$ is totally ramified, then the map
|
||||
%
|
||||
\[
|
||||
@ -213,7 +213,7 @@ Note also that for $j \ge 1$:
|
||||
????
|
||||
\end{proof}
|
||||
%
|
||||
\begin{Lemma}
|
||||
\begin{Lemma} \label{lem:TiM_isomorphism}
|
||||
For any $i \le p^n - 1$:
|
||||
%
|
||||
\[
|
||||
@ -224,14 +224,27 @@ Note also that for $j \ge 1$:
|
||||
|
||||
\end{proof}
|
||||
%
|
||||
\begin{proof}[Proof of Theorem ????]
|
||||
\begin{Lemma}
|
||||
Let $M$ be a $k[H]$-module. Let $T^i M$ be as above and
|
||||
$\mc T^i M := T^i_{H'} M$ for $H' \le H$, $H' \cong \ZZ/p^{n-1}$.
|
||||
If $\mc T^i M \cong \mc T^{i+1} M$ for some $i$ then:
|
||||
%
|
||||
\[
|
||||
T^{pi + p} M \cong T^{pi + p - 1} M \cong \ldots \cong T^{pi - p + 1} M.
|
||||
\]
|
||||
\end{Lemma}
|
||||
\begin{proof}
|
||||
??
|
||||
\end{proof}
|
||||
|
||||
\begin{proof}[Proof of Theorem~\ref{thm:cyclic_de_rham}]
|
||||
We use the following notation: $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$,
|
||||
$H'' := H/\langle \sigma^{p^{n-1}} \rangle \cong \ZZ/p^{n-1}$, $Y' := X/H'$, $X'' := X/H''$.
|
||||
Write also $M := H^1_{dR}(X)$.
|
||||
Write also $\mc M := H^1_{dR}(X)$.
|
||||
By induction hypothesis for $H'$ acting on $X$, we have the following isomorphism of $k[H']$-modules:
|
||||
%
|
||||
\[
|
||||
M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - 1 -m'} + 1}^2 \oplus \bigoplus_{P \neq P_0} \mc J_{p^n - \frac{p^{n-1}}{e_{X/Y', P}}}^2
|
||||
\mc M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - 1 -m'} + 1}^2 \oplus \bigoplus_{P \neq P_0} \mc J_{p^n - \frac{p^{n-1}}{e_{X/Y', P}}}^2
|
||||
\oplus \bigoplus_P \bigoplus_{t = 0}^{n-1} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}}
|
||||
\]
|
||||
%
|
||||
@ -245,34 +258,40 @@ Note also that for $j \ge 1$:
|
||||
\end{cases}
|
||||
\]
|
||||
|
||||
Therefore, for $???$
|
||||
Therefore, for $i \le p^n - p^{n-1}$
|
||||
%
|
||||
\begin{align*}
|
||||
\dim_k \mc T^i M =
|
||||
\dim_k \mc T^i \mc M =
|
||||
\begin{cases}
|
||||
???,
|
||||
\end{cases}
|
||||
\end{align*}
|
||||
%
|
||||
In particular, $\dim_k \mc T^1 M = \ldots = \dim_k \mc T^{p^{n-1} - p^{n-2}} M$.
|
||||
On the other hand, by Lemma ??:
|
||||
In particular, $\dim_k \mc T^1 \mc M = \ldots = \dim_k \mc T^{p^{n-1} - p^{n-2}} \mc M$.
|
||||
On the other hand, by Lemma~\ref{lem:TiM_isomorphism}:
|
||||
%
|
||||
\begin{align*}
|
||||
\dim_k \mc T^1 M &= \dim_k T^1 M + \ldots + \dim_k T^p M\\
|
||||
&\ge \dim_k T^{p^n - p^{n-1}} M + \ldots + \dim_k T^{p^n - p^{n-1}} M
|
||||
= \dim_k \mc T^{p^{n-1} - p^{n-2}} M.
|
||||
\dim_k \mc T^1 \mc M &= \dim_k T^1 \mc M + \ldots + \dim_k T^p \mc M\\
|
||||
&\ge \dim_k T^{p^n - p^{n-1}} \mc M + \ldots + \dim_k T^{p^n - p^{n-1}} \mc M
|
||||
= \dim_k \mc T^{p^{n-1} - p^{n-2}} \mc M.
|
||||
\end{align*}
|
||||
%
|
||||
Since the left-hand side and right hand side are equal, we conclude by Lemma ???
|
||||
Since the left-hand side and right hand side are equal, we conclude by Lemma~\ref{lem:TiM_isomorphism}
|
||||
that
|
||||
%
|
||||
\[
|
||||
\dim_k T^1 M = \ldots = \dim_k T^{p^n - p^{n-1}} M = \frac{1}{p} \dim_k \mc T^1 M.
|
||||
\dim_k T^1 \mc M = \ldots = \dim_k T^{p^n - p^{n-1}} \mc M = \frac{1}{p} \dim_k \mc T^1 \mc M.
|
||||
\]
|
||||
%
|
||||
If the cover $X \to X''$ is \'{e}tale, then the cover $X \to Y$ must be also \'{e}tale.
|
||||
We consider now two cases. If the cover $X \to Y$ is \'{e}tale, then by Lemma~\ref{lem:G_invariants_etale} we have
|
||||
%
|
||||
\[
|
||||
\dim_k T^1 \mc M = 2 g_{X''}
|
||||
\]
|
||||
|
||||
then the cover $X \to Y$ must be also \'{e}tale.
|
||||
Thus the proof follows in this case by~\cite{Nakajima??Inventiones}. Suppose now that
|
||||
$X \to X''$ is not \'{e}tale. Then, by Lemma ???, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Moreover, note that in the group ring $k[H]$ we have:
|
||||
$X \to X''$ is not \'{e}tale. Then, by Lemma~\ref{lem:trace_surjective}, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Moreover, note that in the group ring $k[H]$ we have:
|
||||
%
|
||||
\[
|
||||
\tr_{X/X''} = \sum_{j = 0}^{p-1} (\sigma^{p^{n-1}})^j = (\sigma^{p^{n-1}} - 1)^{p-1} =
|
||||
@ -282,13 +301,13 @@ Note also that for $j \ge 1$:
|
||||
This implies that:
|
||||
%
|
||||
\[
|
||||
\ker(\tr_{X/X''} : M \to M'') = M^{(p^n - p^{n-1})}
|
||||
\ker(\tr_{X/X''} : \mc M \to \mc M'') = \mc M^{(p^n - p^{n-1})}
|
||||
\]
|
||||
%
|
||||
and that $\tr_{X/X''}$ induces a $k$-linear isomorphism $T^{i + p^n - p^{n-1}} M \to \mc T^i M''$ for any $i \ge 1$. Thus:
|
||||
%
|
||||
\[
|
||||
\dim_k T^{i + p^n - p^{n-1}} M = \dim_k \mc T^i M'' = ....
|
||||
\dim_k T^{i + p^n - p^{n-1}} \mc M = \dim_k \mc T^i \mc M'' = ....
|
||||
\]
|
||||
%
|
||||
This ends the proof.
|
||||
@ -296,7 +315,117 @@ Note also that for $j \ge 1$:
|
||||
|
||||
\section{Hypoelementary covers}
|
||||
%
|
||||
Assume now that $G = H \rtimes_{\chi} \ZZ/??n$.
|
||||
Assume now that $G = H \rtimes_{\chi} \ZZ/c$.
|
||||
%
|
||||
\begin{Proposition} \label{prop:main_thm_for_hypoelementary}
|
||||
Main Theorem holds for a hypoelementary $G$ as above and $k = \ol k$.
|
||||
\end{Proposition}
|
||||
%
|
||||
\begin{Lemma}
|
||||
Let $M$ be a $k[G]$-module of finite dimension. The $k[G]$-structure of $M$
|
||||
is uniquely determined by the $k[C]$-structure of $T^1 M, \ldots, T^{p^n} M$.
|
||||
\end{Lemma}
|
||||
\begin{proof}
|
||||
???
|
||||
\end{proof}
|
||||
%
|
||||
\begin{Lemma} \label{lem:N+Nchi+...}
|
||||
Let $N_1$, $N_2$ be $k[G]$-modules. Assume that for some $j$
|
||||
%
|
||||
\[
|
||||
N_1 \oplus N_1^{\chi} \oplus \ldots \oplus N_1^{\chi^j}
|
||||
\cong N_2 \oplus N_2^{\chi} \oplus \ldots \oplus N_2^{\chi^j}.
|
||||
\]
|
||||
%
|
||||
If $\GCD(j, p-1) = 1$, then $N_1 \cong N_2$. If $p-1 | j$, then
|
||||
$N_1 \cong N_2^{\chi^i}$ for some $i$.
|
||||
\end{Lemma}
|
||||
\begin{proof}
|
||||
|
||||
\end{proof}
|
||||
%
|
||||
\begin{Lemma} \label{lem:chevalley_weil_for_Z/p}
|
||||
If $X$ has a $G$-action and $Y := X/H$,
|
||||
then as $k[C]$-modules:
|
||||
%
|
||||
\[
|
||||
H^1_{dR}(X) \cong H^1_{dR}(Y) \oplus N^{p-1}
|
||||
\]
|
||||
%
|
||||
for a $k[C]$-module $N$ such that $N^{\chi} \cong N$.
|
||||
\end{Lemma}
|
||||
\begin{proof}
|
||||
??Chevalley--Weil??
|
||||
??is it really needed ??
|
||||
\end{proof}
|
||||
%
|
||||
\begin{Lemma} \label{lem:TiM_isomorphism_hypoelementary}
|
||||
For any $i \le p^n - 1$:
|
||||
%
|
||||
\[
|
||||
(\sigma - 1) : T^{i+1} M \hookrightarrow (T^i M)^{\chi^{-1}}.
|
||||
\]
|
||||
\end{Lemma}
|
||||
\begin{proof}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{proof}[Proof of Proposition~\ref{prop:main_thm_for_hypoelementary}]
|
||||
We prove this by induction on $n$. If $n = 0$, then it follows by Chevalley--Weil theorem.
|
||||
Consider now two cases. Firstly, we assume that $X \to Y$ is \'{e}tale.
|
||||
Recall that by proof of Theorem~\ref{thm:cyclic_de_rham}, the map $(\sigma - 1)$
|
||||
is an isomorphism of $k$-vector spaces between $T^{i+1} \mc M$ and $T^i \mc M$ for
|
||||
$i = 2, \ldots, p^n$. This yields an isomorphism of $k[C]$-modules for $i \ge 2$:
|
||||
%
|
||||
\begin{equation} \label{eqn:TiM=T1M_chi_etale}
|
||||
T^i \mc M \cong (T^2 \mc M)^{\chi^{-i+2}}
|
||||
\end{equation}
|
||||
%
|
||||
Observe that $\mc T^i \mc M$ has the filtration $\mc M^{(pi)} \supset \mc M^{(pi - 1)} \supset \ldots \supset \mc M^{(pi - p)}$ with subquotients $T^{pi} \mc M, \ldots, T^{pi - p} \mc M$.
|
||||
Thus, since the category of $k[C]$-modules is semisimple, for $i \le p^n - p^{n-1}$:
|
||||
%
|
||||
\begin{align*}
|
||||
\mc T^i \mc M &\cong
|
||||
\begin{cases}
|
||||
T^1 \mc M \oplus T^2 \mc M \oplus \ldots \oplus (T^2 \mc M)^{\chi^{-p + 1}}, & i = 1\\
|
||||
T^2 \mc M \oplus \ldots \oplus (T^2 \mc M)^{\chi^{-p}}, & i > 1.
|
||||
\end{cases}
|
||||
\end{align*}
|
||||
%
|
||||
Thus, since by induction hypothesis $\mc T^i \mc M$ is determined by ramification data,
|
||||
we have by Lemma~\ref{lem:N+Nchi+...} that $T^2 \mc M$ is determined by ramification data.
|
||||
Moreover, by Lemma~\ref{lem:G_invariants_etale}, $T^1 \mc M \cong H^1_{dR}(X'')$
|
||||
is also determined by ramification data (???).
|
||||
|
||||
Assume now that $X \to Y$ is not etale. Analogously as in the previous case, Lemma~\ref{lem:TiM_isomorphism_hypoelementary} and proof of Theorem~\ref{thm:cyclic_de_rham}
|
||||
yield an isomorphism of $k[C]$-modules:
|
||||
%
|
||||
\begin{equation} \label{eqn:TiM=T1M_chi}
|
||||
T^{i+1} \mc M \cong (T^1 \mc M)^{\chi^{-i}}
|
||||
\end{equation}
|
||||
%
|
||||
for $i \le p^n - p^{n-1}$. Observe that $\mc T^i M$ has the filtration $\mc M^{(pi)} \supset \mc M^{(pi - 1)} \supset \ldots \supset \mc M^{(pi - p)}$ with subquotients $T^{pi} \mc M, \ldots, T^{pi - p + 1} \mc M$.
|
||||
Thus, since the category of $k[C]$-modules is semisimple, for $i \le p^n - p^{n-1}$:
|
||||
%
|
||||
\begin{align*}
|
||||
\mc T^i \mc M &\cong T^{pi - p + 1} \mc M \oplus \ldots \oplus T^{pi} \mc M\\
|
||||
&\cong T^1 \mc M \oplus (T^1 \mc M)^{\chi^{-1}} \oplus \ldots \oplus
|
||||
(T^1 \mc M)^{\chi^{-p}}.
|
||||
\end{align*}
|
||||
%
|
||||
By induction assumption, the $k[C]$-module structure of $\mc T^i \mc M$ is uniquely determined by the ramification data. Thus, by Lemma~\ref{lem:N+Nchi+...} for $N := T^1 \mc M$ and by~\eqref{eqn:TiM=T1M_chi} the $k[C]$-structure of the modules $T^i \mc M$ is uniquely determined by the ramification data for $i \le p^n - p^{n-1}$.
|
||||
By similar reasoning, $\tr_{X/X'}$ yields an isomorphism:
|
||||
%
|
||||
\[
|
||||
T^{i + p^n - p^{n-1}} \mc M \cong (\mc T^i \mc M'')^{\chi^{-1??}}.
|
||||
\]
|
||||
%
|
||||
Thus, by induction hypothesis for $\mc M''$, the $k[C]$-structure of $T^{i + p^n - p^{n-1}} \mc M$
|
||||
is determined by ramification data as well.
|
||||
\end{proof}
|
||||
|
||||
\section{Proof of Main Theorem}
|
||||
%
|
||||
(Conlon induction ???) (algebraic closure ???)
|
||||
\bibliography{bibliografia}
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user