pf for hypoelementary

This commit is contained in:
jgarnek 2024-10-17 20:22:54 +02:00
parent 00c319f4c0
commit c44ac3b620
3 changed files with 154 additions and 24 deletions

View File

@ -1,4 +1,5 @@
\BOOKMARK [1][-]{section.1}{\376\377\0001\000.\000\040\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{}% 1
\BOOKMARK [1][-]{section.2}{\376\377\0002\000.\000\040\000C\000y\000c\000l\000i\000c\000\040\000c\000o\000v\000e\000r\000s}{}% 2
\BOOKMARK [1][-]{section.3}{\376\377\0003\000.\000\040\000H\000y\000p\000o\000e\000l\000e\000m\000e\000n\000t\000a\000r\000y\000\040\000c\000o\000v\000e\000r\000s}{}% 3
\BOOKMARK [1][-]{section*.1}{\376\377\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{}% 4
\BOOKMARK [1][-]{section.4}{\376\377\0004\000.\000\040\000P\000r\000o\000o\000f\000\040\000o\000f\000\040\000M\000a\000i\000n\000\040\000T\000h\000e\000o\000r\000e\000m}{}% 4
\BOOKMARK [1][-]{section*.1}{\376\377\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{}% 5

Binary file not shown.

View File

@ -143,14 +143,14 @@ hyperref, bbm, mathtools, mathrsfs}
Let for any $\ZZ/p^n$-cover $X \to Y$
%
\begin{align*}
u_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_P^{(t)} \cong \ZZ/p^{n-t???} \},\\
l_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_{P, t} \cong \ZZ/p^{n-t???} \}.
u_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_P^{(t)} \cong \ZZ/p^{n-t} \},\\
l_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_{P, t} \cong \ZZ/p^{n-t} \}.
\end{align*}
%
Note that if $G_P = \ZZ/p^n$, this coincides with the standard definition of
the $t$th upper (resp. lower) ramification jump of $X \to Y$ at $P$.
%
\begin{Theorem}
\begin{Theorem} \label{thm:cyclic_de_rham}
Suppose that $\pi : X \to Y$ is a $\ZZ/p^n$-cover. Let $\langle G_P : P \in X(k) \rangle = \ZZ/p^m = G_{P_0}$ for $P_0 \in X(k)$. Then, as $k[\ZZ/p^n]$-modules:
%
\[
@ -187,7 +187,7 @@ Note also that for $j \ge 1$:
\end{itemize}
\begin{Lemma}
\begin{Lemma} \label{lem:G_invariants_etale}
If the $G$-cover $X \to Y$ is \'{e}tale, then the natural map
%
\[
@ -200,7 +200,7 @@ Note also that for $j \ge 1$:
????
\end{proof}
%
\begin{Lemma}
\begin{Lemma} \label{lem:trace_surjective}
If the $G$-cover $X \to Y$ is totally ramified, then the map
%
\[
@ -213,7 +213,7 @@ Note also that for $j \ge 1$:
????
\end{proof}
%
\begin{Lemma}
\begin{Lemma} \label{lem:TiM_isomorphism}
For any $i \le p^n - 1$:
%
\[
@ -224,14 +224,27 @@ Note also that for $j \ge 1$:
\end{proof}
%
\begin{proof}[Proof of Theorem ????]
\begin{Lemma}
Let $M$ be a $k[H]$-module. Let $T^i M$ be as above and
$\mc T^i M := T^i_{H'} M$ for $H' \le H$, $H' \cong \ZZ/p^{n-1}$.
If $\mc T^i M \cong \mc T^{i+1} M$ for some $i$ then:
%
\[
T^{pi + p} M \cong T^{pi + p - 1} M \cong \ldots \cong T^{pi - p + 1} M.
\]
\end{Lemma}
\begin{proof}
??
\end{proof}
\begin{proof}[Proof of Theorem~\ref{thm:cyclic_de_rham}]
We use the following notation: $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$,
$H'' := H/\langle \sigma^{p^{n-1}} \rangle \cong \ZZ/p^{n-1}$, $Y' := X/H'$, $X'' := X/H''$.
Write also $M := H^1_{dR}(X)$.
Write also $\mc M := H^1_{dR}(X)$.
By induction hypothesis for $H'$ acting on $X$, we have the following isomorphism of $k[H']$-modules:
%
\[
M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - 1 -m'} + 1}^2 \oplus \bigoplus_{P \neq P_0} \mc J_{p^n - \frac{p^{n-1}}{e_{X/Y', P}}}^2
\mc M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - 1 -m'} + 1}^2 \oplus \bigoplus_{P \neq P_0} \mc J_{p^n - \frac{p^{n-1}}{e_{X/Y', P}}}^2
\oplus \bigoplus_P \bigoplus_{t = 0}^{n-1} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}}
\]
%
@ -245,34 +258,40 @@ Note also that for $j \ge 1$:
\end{cases}
\]
Therefore, for $???$
Therefore, for $i \le p^n - p^{n-1}$
%
\begin{align*}
\dim_k \mc T^i M =
\dim_k \mc T^i \mc M =
\begin{cases}
???,
\end{cases}
\end{align*}
%
In particular, $\dim_k \mc T^1 M = \ldots = \dim_k \mc T^{p^{n-1} - p^{n-2}} M$.
On the other hand, by Lemma ??:
In particular, $\dim_k \mc T^1 \mc M = \ldots = \dim_k \mc T^{p^{n-1} - p^{n-2}} \mc M$.
On the other hand, by Lemma~\ref{lem:TiM_isomorphism}:
%
\begin{align*}
\dim_k \mc T^1 M &= \dim_k T^1 M + \ldots + \dim_k T^p M\\
&\ge \dim_k T^{p^n - p^{n-1}} M + \ldots + \dim_k T^{p^n - p^{n-1}} M
= \dim_k \mc T^{p^{n-1} - p^{n-2}} M.
\dim_k \mc T^1 \mc M &= \dim_k T^1 \mc M + \ldots + \dim_k T^p \mc M\\
&\ge \dim_k T^{p^n - p^{n-1}} \mc M + \ldots + \dim_k T^{p^n - p^{n-1}} \mc M
= \dim_k \mc T^{p^{n-1} - p^{n-2}} \mc M.
\end{align*}
%
Since the left-hand side and right hand side are equal, we conclude by Lemma ???
Since the left-hand side and right hand side are equal, we conclude by Lemma~\ref{lem:TiM_isomorphism}
that
%
\[
\dim_k T^1 M = \ldots = \dim_k T^{p^n - p^{n-1}} M = \frac{1}{p} \dim_k \mc T^1 M.
\dim_k T^1 \mc M = \ldots = \dim_k T^{p^n - p^{n-1}} \mc M = \frac{1}{p} \dim_k \mc T^1 \mc M.
\]
%
If the cover $X \to X''$ is \'{e}tale, then the cover $X \to Y$ must be also \'{e}tale.
We consider now two cases. If the cover $X \to Y$ is \'{e}tale, then by Lemma~\ref{lem:G_invariants_etale} we have
%
\[
\dim_k T^1 \mc M = 2 g_{X''}
\]
then the cover $X \to Y$ must be also \'{e}tale.
Thus the proof follows in this case by~\cite{Nakajima??Inventiones}. Suppose now that
$X \to X''$ is not \'{e}tale. Then, by Lemma ???, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Moreover, note that in the group ring $k[H]$ we have:
$X \to X''$ is not \'{e}tale. Then, by Lemma~\ref{lem:trace_surjective}, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Moreover, note that in the group ring $k[H]$ we have:
%
\[
\tr_{X/X''} = \sum_{j = 0}^{p-1} (\sigma^{p^{n-1}})^j = (\sigma^{p^{n-1}} - 1)^{p-1} =
@ -282,13 +301,13 @@ Note also that for $j \ge 1$:
This implies that:
%
\[
\ker(\tr_{X/X''} : M \to M'') = M^{(p^n - p^{n-1})}
\ker(\tr_{X/X''} : \mc M \to \mc M'') = \mc M^{(p^n - p^{n-1})}
\]
%
and that $\tr_{X/X''}$ induces a $k$-linear isomorphism $T^{i + p^n - p^{n-1}} M \to \mc T^i M''$ for any $i \ge 1$. Thus:
%
\[
\dim_k T^{i + p^n - p^{n-1}} M = \dim_k \mc T^i M'' = ....
\dim_k T^{i + p^n - p^{n-1}} \mc M = \dim_k \mc T^i \mc M'' = ....
\]
%
This ends the proof.
@ -296,7 +315,117 @@ Note also that for $j \ge 1$:
\section{Hypoelementary covers}
%
Assume now that $G = H \rtimes_{\chi} \ZZ/??n$.
Assume now that $G = H \rtimes_{\chi} \ZZ/c$.
%
\begin{Proposition} \label{prop:main_thm_for_hypoelementary}
Main Theorem holds for a hypoelementary $G$ as above and $k = \ol k$.
\end{Proposition}
%
\begin{Lemma}
Let $M$ be a $k[G]$-module of finite dimension. The $k[G]$-structure of $M$
is uniquely determined by the $k[C]$-structure of $T^1 M, \ldots, T^{p^n} M$.
\end{Lemma}
\begin{proof}
???
\end{proof}
%
\begin{Lemma} \label{lem:N+Nchi+...}
Let $N_1$, $N_2$ be $k[G]$-modules. Assume that for some $j$
%
\[
N_1 \oplus N_1^{\chi} \oplus \ldots \oplus N_1^{\chi^j}
\cong N_2 \oplus N_2^{\chi} \oplus \ldots \oplus N_2^{\chi^j}.
\]
%
If $\GCD(j, p-1) = 1$, then $N_1 \cong N_2$. If $p-1 | j$, then
$N_1 \cong N_2^{\chi^i}$ for some $i$.
\end{Lemma}
\begin{proof}
\end{proof}
%
\begin{Lemma} \label{lem:chevalley_weil_for_Z/p}
If $X$ has a $G$-action and $Y := X/H$,
then as $k[C]$-modules:
%
\[
H^1_{dR}(X) \cong H^1_{dR}(Y) \oplus N^{p-1}
\]
%
for a $k[C]$-module $N$ such that $N^{\chi} \cong N$.
\end{Lemma}
\begin{proof}
??Chevalley--Weil??
??is it really needed ??
\end{proof}
%
\begin{Lemma} \label{lem:TiM_isomorphism_hypoelementary}
For any $i \le p^n - 1$:
%
\[
(\sigma - 1) : T^{i+1} M \hookrightarrow (T^i M)^{\chi^{-1}}.
\]
\end{Lemma}
\begin{proof}
\end{proof}
\begin{proof}[Proof of Proposition~\ref{prop:main_thm_for_hypoelementary}]
We prove this by induction on $n$. If $n = 0$, then it follows by Chevalley--Weil theorem.
Consider now two cases. Firstly, we assume that $X \to Y$ is \'{e}tale.
Recall that by proof of Theorem~\ref{thm:cyclic_de_rham}, the map $(\sigma - 1)$
is an isomorphism of $k$-vector spaces between $T^{i+1} \mc M$ and $T^i \mc M$ for
$i = 2, \ldots, p^n$. This yields an isomorphism of $k[C]$-modules for $i \ge 2$:
%
\begin{equation} \label{eqn:TiM=T1M_chi_etale}
T^i \mc M \cong (T^2 \mc M)^{\chi^{-i+2}}
\end{equation}
%
Observe that $\mc T^i \mc M$ has the filtration $\mc M^{(pi)} \supset \mc M^{(pi - 1)} \supset \ldots \supset \mc M^{(pi - p)}$ with subquotients $T^{pi} \mc M, \ldots, T^{pi - p} \mc M$.
Thus, since the category of $k[C]$-modules is semisimple, for $i \le p^n - p^{n-1}$:
%
\begin{align*}
\mc T^i \mc M &\cong
\begin{cases}
T^1 \mc M \oplus T^2 \mc M \oplus \ldots \oplus (T^2 \mc M)^{\chi^{-p + 1}}, & i = 1\\
T^2 \mc M \oplus \ldots \oplus (T^2 \mc M)^{\chi^{-p}}, & i > 1.
\end{cases}
\end{align*}
%
Thus, since by induction hypothesis $\mc T^i \mc M$ is determined by ramification data,
we have by Lemma~\ref{lem:N+Nchi+...} that $T^2 \mc M$ is determined by ramification data.
Moreover, by Lemma~\ref{lem:G_invariants_etale}, $T^1 \mc M \cong H^1_{dR}(X'')$
is also determined by ramification data (???).
Assume now that $X \to Y$ is not etale. Analogously as in the previous case, Lemma~\ref{lem:TiM_isomorphism_hypoelementary} and proof of Theorem~\ref{thm:cyclic_de_rham}
yield an isomorphism of $k[C]$-modules:
%
\begin{equation} \label{eqn:TiM=T1M_chi}
T^{i+1} \mc M \cong (T^1 \mc M)^{\chi^{-i}}
\end{equation}
%
for $i \le p^n - p^{n-1}$. Observe that $\mc T^i M$ has the filtration $\mc M^{(pi)} \supset \mc M^{(pi - 1)} \supset \ldots \supset \mc M^{(pi - p)}$ with subquotients $T^{pi} \mc M, \ldots, T^{pi - p + 1} \mc M$.
Thus, since the category of $k[C]$-modules is semisimple, for $i \le p^n - p^{n-1}$:
%
\begin{align*}
\mc T^i \mc M &\cong T^{pi - p + 1} \mc M \oplus \ldots \oplus T^{pi} \mc M\\
&\cong T^1 \mc M \oplus (T^1 \mc M)^{\chi^{-1}} \oplus \ldots \oplus
(T^1 \mc M)^{\chi^{-p}}.
\end{align*}
%
By induction assumption, the $k[C]$-module structure of $\mc T^i \mc M$ is uniquely determined by the ramification data. Thus, by Lemma~\ref{lem:N+Nchi+...} for $N := T^1 \mc M$ and by~\eqref{eqn:TiM=T1M_chi} the $k[C]$-structure of the modules $T^i \mc M$ is uniquely determined by the ramification data for $i \le p^n - p^{n-1}$.
By similar reasoning, $\tr_{X/X'}$ yields an isomorphism:
%
\[
T^{i + p^n - p^{n-1}} \mc M \cong (\mc T^i \mc M'')^{\chi^{-1??}}.
\]
%
Thus, by induction hypothesis for $\mc M''$, the $k[C]$-structure of $T^{i + p^n - p^{n-1}} \mc M$
is determined by ramification data as well.
\end{proof}
\section{Proof of Main Theorem}
%
(Conlon induction ???) (algebraic closure ???)
\bibliography{bibliografia}
\end{document}