before changing ramification jumps

This commit is contained in:
jgarnek 2024-11-04 19:58:52 +01:00
parent 3ef78ffca3
commit e8d013b3f5
2 changed files with 34 additions and 3 deletions

Binary file not shown.

View File

@ -181,13 +181,13 @@ and $\mc T^i M := T^i_{H'} M$ for any $k[H']$-module $M$.\\
Note also that for $j \ge 1$: Note also that for $j \ge 1$:
% %
\[ \[
l_{X/Y, P}^{(j)} - l_{X/Y, P}^{(j-1)} = \frac{1}{p^{j-1}} (u_{X/Y, P}^{(j)} - u^{(j-1)}_{X/Y, P}) u_{X/Y, P}^{(j)} - u_{X/Y, P}^{(j-1)} = \frac{1}{p^{j-1}} (l_{X/Y, P}^{(j)} - l^{(j-1)}_{X/Y, P})
\] \]
% %
(in particular, $u_{X/Y, P}^{(1)} = l_{X/Y, P}^{(1)}$). Moreover, if $X' \to Y$ is the $\ZZ/p^N$-subcover of $X \to Y$ for $N \le n$ then: (in particular, $u_{X/Y, P}^{(1)} = l_{X/Y, P}^{(1)}$). Moreover, if $X' \to Y$ is the $\ZZ/p^N$-subcover of $X \to Y$ for $N \le n$ then:
% %
\begin{itemize} \begin{itemize}
\item $u_{X'/Y, P}^{(t)} = u_{X/Y, P}^{(t)}$ for $t \le N$, \item $u_{X'/Y, P'}^{(t)} = u_{X/Y, P}^{(t)}$ for $t \le N$ (here $P'$ denotes the image of~$P$ on~$X'$),
\item $l_{X/X', P}^{(t)} = l_{X/Y, P}^{(t + N)}$ for $t \le n-N$. \item $l_{X/X', P}^{(t)} = l_{X/Y, P}^{(t + N)}$ for $t \le n-N$.
\end{itemize} \end{itemize}
@ -290,6 +290,37 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
% %
Since the left-hand side and right hand side are equal, we conclude by Lemma~\ref{lem:TiM_isomorphism} Since the left-hand side and right hand side are equal, we conclude by Lemma~\ref{lem:TiM_isomorphism}
\end{proof} \end{proof}
%
\begin{Lemma}
For any $P \in X(k)$:
%
\[
p \cdot u^{(n)}_{X/Y, P} = u^{(n-1)}_{X/Y', P} + (p-1) \cdot l^{(1)}_{Y'/Y, Q},
\]
%
\end{Lemma}
\begin{proof}
Note that:
%
\begin{align*}
u^{(n)}_{X/Y, P} - u^{(1)}_{X/Y, P} &= \sum_{j = 1}^{n-1} (u^{(j+1)}_{X/Y, P} - u^{(j)}_{X/Y, P}) = \sum_{j = 1}^{n-1} \frac{1}{p^j} (l^{(j+1)}_{X/Y, P} - l^{(j)}_{X/Y, P}).
\end{align*}
%
Similarly:
%
\[
u^{(n-1)}_{X/Y', P} - u^{(1)}_{X/Y', P} = \sum_{j = 1}^{n-2} \frac{1}{p^j} (l^{(j+1)}_{X/Y', P} - l^{(j)}_{X/Y', P}).
\]
We have:
%
\begin{align*}
p \cdot u^{(n)}_{X/Y, P} &= p \cdot (u^{(n)}_{X/Y, P} - u^{(1)}_{X/Y, P}) + u^{(1)}_{X/Y, Q}\\
&=p \cdot \sum_{j = 1}^{n-1} (u^{(j+1)}_{X/Y, P} - u^{(j)}_{X/Y, P}) + u^{(1)}_{X/Y, P}\\
&=p \cdot \sum_{j = 1}^{n-1} \frac{1}{p^j} (l^{(j+1)}_{X/Y, P} - l^{(j)}_{X/Y, P}) + u^{(1)}_{X/Y, P}\\
&=p \cdot \sum_{j = 1}^{n-1} \frac{1}{p^j} (l^{(j)}_{X/Y', P} - l^{(j-1)}_{X/Y', P}) + u^{(1)}_{X/Y, P}\\
\end{align*}
\end{proof}
\begin{proof}[Proof of Theorem~\ref{thm:cyclic_de_rham}] \begin{proof}[Proof of Theorem~\ref{thm:cyclic_de_rham}]
We use the following notation: $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$, We use the following notation: $H' := \langle \sigma^p \rangle \cong \ZZ/p^{n-1}$,
@ -340,7 +371,7 @@ shows that $m_{\sigma - 1}$ is well-defined and injective.
p \cdot u^{(n)}_{X/Y, P} = u^{(n-1)}_{X/Y', P} + (p-1) \cdot l^{(1)}_{Y'/Y, Q}, p \cdot u^{(n)}_{X/Y, P} = u^{(n-1)}_{X/Y', P} + (p-1) \cdot l^{(1)}_{Y'/Y, Q},
\] \]
% %
where $Q$ denotes the image of~$P$ in~$Y'$. where $Q$ denotes the image of~$P$ in~$Y'$. Indeed, ?????
Therefore, for $i \le p^{n-1} - p^{n-2}$, using the Riemann--Hurwitz formula (cf. ????): Therefore, for $i \le p^{n-1} - p^{n-2}$, using the Riemann--Hurwitz formula (cf. ????):
% %
\begin{align*} \begin{align*}