495 lines
15 KiB
TeX
495 lines
15 KiB
TeX
\documentclass[10pt]{amsart}
|
|
\usepackage{calrsfs}
|
|
|
|
\usepackage{amsmath,tikz}
|
|
\usetikzlibrary{tikzmark,fit}
|
|
\newcommand\bigzero{\makebox(0,0){\text{\huge0}}}
|
|
|
|
|
|
\usepackage[greek,english]{babel}
|
|
% \usepackage[iso-8859-7]{inputenc}
|
|
\usepackage{graphicx}
|
|
%\usepackage{hyperref}
|
|
\usepackage{amsthm}
|
|
\usepackage{amssymb}
|
|
\usepackage{multirow}
|
|
\usepackage{tikz-cd}
|
|
\usepackage{amsmath}
|
|
\usepackage{todonotes}
|
|
\usepackage{amsbsy}
|
|
\usepackage[all]{xy}
|
|
\usepackage{qtree}
|
|
% \usepackage{comment}
|
|
|
|
\usepackage{enumitem}
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\usepackage{xfrac}
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\usepackage{color, colortbl}
|
|
\definecolor{LightCyan}{rgb}{0.88,1,1}
|
|
\definecolor{Gray}{gray}{0.9}
|
|
|
|
\usepackage{faktor}
|
|
|
|
\usepackage{changes}
|
|
\definechangesauthor[color=orange,name={Aristidesd Kontogeorgis}]{AK}
|
|
\definechangesauthor[color=blue,name={Alex Terezakis}]{AT}
|
|
|
|
\usepackage{longtable,booktabs}
|
|
|
|
\usepackage{float} %gia to figure[H] na mpainei to figure ekei pou prepei
|
|
|
|
% \usepackage[linenumbers]{MagmaTeX}
|
|
%\magmanames(depthFirstSearch,nodeVisitor,strongComponents,acyclicQuotient,transitiveQuotient)
|
|
|
|
|
|
%\setlength\textwidth{14cm}
|
|
% \setlength\textwidth{15cm} \setlength\topmargin{0pt}
|
|
% \addtolength\topmargin{-\headheight}
|
|
% \addtolength\topmargin{-\headsep}
|
|
% \setlength\textheight{8.9in}
|
|
% \setlength\oddsidemargin{0pt} \setlength\evensidemargin{0pt}
|
|
% \setlength\marginparwidth{0.5in}
|
|
%\setlength\textwidth{5.5in}
|
|
%d
|
|
|
|
% \newtheorem{proposition}{Proposition}
|
|
% % \numberwithin{proposition}{subsection}
|
|
% \numberwithin{proposition}
|
|
% \newtheorem{lemma}{Lemma}
|
|
% \numberwithin{lemma}{subsection}
|
|
% \newtheorem{example}{Example}
|
|
% \numberwithin{example}{subsection}
|
|
% \newtheorem{definition}{Definition}
|
|
% \numberwithin{definition}{subsection}
|
|
% \newtheorem{exercise}{Exercise}
|
|
% \numberwithin{exercise}{subsection}
|
|
% \newtheorem{corollary}{Corollary}
|
|
% \numberwithin{corollary}{subsection}
|
|
% \newtheorem{comments}{Comments}
|
|
% \numberwithin{comments}{subsection}
|
|
% \newtheorem{examples}{Examples}
|
|
% \numberwithin{examples}{subsection}
|
|
% \newtheorem{theorem}{Theorem}
|
|
% \numberwithin{theorem}{subsection}
|
|
% \newtheorem{problem}{Problem}
|
|
% \numberwithin{problem}{subsection}
|
|
|
|
\newtheorem{theorem}{Theorem}
|
|
\newtheorem{lemma}[theorem]{Lemma}
|
|
\newtheorem{corollary}[theorem]{Corollary}
|
|
\newtheorem{proposition}[theorem]{Proposition}
|
|
\theoremstyle{definition}
|
|
\newtheorem{example}[theorem]{Example}
|
|
\newtheorem{remark}[theorem]{Remark}
|
|
\newtheorem{definition}[theorem]{Definition}
|
|
\newtheorem{convention}[theorem]{Convention}
|
|
\newtheorem{problem}{Problem}
|
|
|
|
|
|
\newcommand{\Ker}{\mathrm Ker}
|
|
\newcommand{\adj}{\mathrm adj}
|
|
\newcommand{\nullspace}{\mathrm Null}
|
|
\newcommand{\la}{\latintext}
|
|
\newcommand{\slg}{\selectlanguage{greek}}
|
|
\renewcommand{\Im}{\mathrm Im}
|
|
\newcommand{\Char}{\mathrm char}
|
|
\newcommand{\Diff}{\mathrm Diff}
|
|
\newcommand{\Spe}{\mathrm Spec }
|
|
\newcommand{\mdeg}{\mathrm mdeg}
|
|
|
|
\newcommand{\lc}{\left\lceil}
|
|
\newcommand{\rc}{\right\rceil}
|
|
\newcommand{\lf}{\left\lfloor}
|
|
\newcommand{\rf}{\right\rfloor}
|
|
|
|
\newcommand{\Z}{\mathbb{Z}}
|
|
\newcommand{\R}{\mathbb{R}}
|
|
% \newcommand{\C}{\mathbb{C}}
|
|
\newcommand{\Q}{\mathbb{Q}}
|
|
\newcommand{\Heis}{\mathrm Heis}
|
|
\newcommand{\Fer}{\mathrm Fer}
|
|
|
|
|
|
\newcommand{\Dgl}{{D_{\mathrm gl}}}
|
|
|
|
\newcommand{\codim}{{\mathrm codim}}
|
|
\newcommand{\init}{{\mathrm in_\prec}}
|
|
|
|
\newcommand{\HomC}{\mathcal{H}\!\mathit{om}}
|
|
|
|
\DeclareMathOperator{\Ima}{Im}
|
|
|
|
\newcommand{\cL}{{\mathcal{L}}}
|
|
\newcommand{\Id}{{\mathrm Id}}
|
|
% \newcommand{\Hom}{{\mathrm Hom}}
|
|
\newcommand{\tg}{{\mathrm tg}}
|
|
\newcommand{\cO}{ {\mathcal{O} } }
|
|
\newcommand{\TO}{{\mathcal{T}_\mathcal{O} }}
|
|
\newcommand{\T}{{\mathcal{T}}}
|
|
% \newcommand{\Aut}{{ \mathrm Aut }}
|
|
\newcommand{\Fp}{{\mathbb{F}_p}}
|
|
\newcommand{\F}{{\mathbb{F}}}
|
|
\newcommand{\im}{{ \mathrm Im }}
|
|
\renewcommand{\O}{{\mathcal{O}}}
|
|
% \newcommand{\asp}{ \begin{array}{c} \; \\ \; \\mathrm{end}{array}}
|
|
% \newcommand{\Gal}{\mathrm{Gal}}
|
|
\renewcommand{\mod}{{\;\mathrm{mod}}}
|
|
\newcommand{\G}{{\mathcal{G}}}
|
|
\newcommand{\rad}{{\mathrm rad}}
|
|
\newcommand{\Rgl}{R}
|
|
\newcommand{\m}{\mathfrak{m}}
|
|
|
|
\newcommand{\bb}{\textbf}
|
|
\newcommand{\uu}{\underline}
|
|
\newcommand{\ol}{\overline}
|
|
\newcommand{\mc}{\mathcal}
|
|
\newcommand{\wh}{\widehat}
|
|
\newcommand{\wt}{\widetilde}
|
|
\newcommand{\mf}{\mathfrak}
|
|
\newcommand{\ms}{\mathscr}
|
|
\renewcommand{\AA}{\mathbb{A}}
|
|
\newcommand{\II}{\mathbb{I}}
|
|
\newcommand{\HH}{\mathbb{H}}
|
|
\newcommand{\ZZ}{\mathbb{Z}}
|
|
\newcommand{\CC}{\mathbb{C}}
|
|
\newcommand{\RR}{\mathbb{R}}
|
|
\newcommand{\PP}{\mathbb{P}}
|
|
\newcommand{\QQ}{\mathbb{Q}}
|
|
\newcommand{\LL}{\mathbb{L}}
|
|
\newcommand{\NN}{\mathbb{N}}
|
|
\newcommand{\FF}{\mathbb{F}}
|
|
\newcommand{\VV}{\mathbb{V}}
|
|
\newcommand{\ddeg}{\textbf{deg}\,}
|
|
\DeclareMathOperator{\SSh}{-Sh}
|
|
\DeclareMathOperator{\Ind}{Ind}
|
|
\DeclareMathOperator{\pr}{pr}
|
|
\DeclareMathOperator{\tr}{tr}
|
|
\DeclareMathOperator{\Sh}{Sh}
|
|
\DeclareMathOperator{\diag}{diag}
|
|
\DeclareMathOperator{\sgn}{sgn}
|
|
\DeclareMathOperator{\Divv}{Div}
|
|
\DeclareMathOperator{\Coind}{Coind}
|
|
\DeclareMathOperator{\coker}{coker}
|
|
% \DeclareMathOperator{\im}{im}
|
|
\DeclareMathOperator{\id}{id}
|
|
\DeclareMathOperator{\Tot}{Tot}
|
|
\DeclareMathOperator{\Span}{Span}
|
|
\DeclareMathOperator{\res}{res}
|
|
\DeclareMathOperator{\Gl}{Gl}
|
|
\DeclareMathOperator{\Sl}{Sl}
|
|
\DeclareMathOperator{\GCD}{GCD}
|
|
\DeclareMathOperator{\ord}{ord}
|
|
\DeclareMathOperator{\Spec}{Spec}
|
|
\DeclareMathOperator{\rank}{rank}
|
|
\DeclareMathOperator{\Gal}{Gal}
|
|
\DeclareMathOperator{\Proj}{Proj}
|
|
\DeclareMathOperator{\Ext}{Ext}
|
|
\DeclareMathOperator{\Hom}{Hom}
|
|
\DeclareMathOperator{\End}{End}
|
|
\DeclareMathOperator{\cha}{char}
|
|
\DeclareMathOperator{\Cl}{Cl}
|
|
\DeclareMathOperator{\Jac}{Jac}
|
|
\DeclareMathOperator{\Lie}{Lie}
|
|
\DeclareMathOperator{\GSp}{GSp}
|
|
\DeclareMathOperator{\Sp}{Sp}
|
|
\DeclareMathOperator{\Sym}{Sym}
|
|
\DeclareMathOperator{\qlog}{qlog}
|
|
\DeclareMathOperator{\Aut}{Aut}
|
|
\DeclareMathOperator{\divv}{div}
|
|
\DeclareMathOperator{\mmod}{-mod}
|
|
\DeclareMathOperator{\ev}{ev}
|
|
\DeclareMathOperator{\Indec}{Indec}
|
|
\DeclareMathOperator{\pole}{pole}
|
|
|
|
|
|
% \DeclareMathOperator{\Ima}{Im}
|
|
|
|
|
|
|
|
|
|
% \newcommand{\defeq}{\mathrel{\vcenter{\baselineskip0.5ex \lineskiplimit0pt
|
|
% \hbox{\scriptsize.}\hbox{\scriptsize.}}}%
|
|
|
|
\newcommand\overmat[2]{%
|
|
\makebox[0pt][l]{$\smash{\color{white}\overbrace{\phantom{%
|
|
\begin{matrix}#2\end{matrix}}}^{\text{\color{black}#1}}}$}#2}
|
|
|
|
\newcommand\bovermat[2]{%
|
|
\makebox[0pt][l]{$\smash{\overbrace{\phantom{%
|
|
\begin{matrix}#2\end{matrix}}}^{\text{#1}}}$}#2}
|
|
|
|
|
|
\date{\today}
|
|
|
|
|
|
\title{Galois Action on Homology of the Heisenberg Curve.}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% \author[A. Kontogeorgis]{Aristides Kontogeorgis}
|
|
% \address{Department of Mathematics, National and Kapodistrian University of Athens
|
|
% Pane\-pist\-imioupolis, 15784 Athens, Greece}
|
|
% \email{kontogar@math.uoa.gr}
|
|
|
|
% \author[D. Noulas]{Dimitrios Noulas}
|
|
% \address{Department of Mathematics, National and Kapodistrian University of Athens\\
|
|
% Panepistimioupolis, 15784 Athens, Greece}
|
|
% \email{dnoulas@math.uoa.gr}
|
|
|
|
|
|
% \author[I. Tsouknidas]{Ioannis Tsouknidas }
|
|
% \address{Department of Mathematics, National and Kapodistrian University of Athens\\
|
|
% Panepistimioupolis, 15784 Athens, Greece}
|
|
% \email{iotsouknidas@math.uoa.gr}
|
|
|
|
|
|
\date \today
|
|
|
|
\makeatletter
|
|
\newcommand{\aprod}{\mathop{\operator@font \hbox{\Large$\ast$}}}
|
|
\makeatother
|
|
|
|
%\renewcommand{\thefootnote}{\fnsymbol{footnote}}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{document}
|
|
\section{Cyclic Ramification}
|
|
|
|
Serre Local fields p. 77 Hasse- Arf for cyclic groups.
|
|
|
|
For a cyclic group $G= \mathbb{Z}/p^n$ and $G(i)=\mathbb{Z}/p^{n-i}$, there are integers $i_0,i_1, \ldots , i_{n-1}>0$ such that
|
|
\begin{align}
|
|
\label{eq:serreI}
|
|
G(0) & =G_0= \cdots = G_{i_0} &&=G^0 = \cdots = G^{i_0} \\
|
|
G(1) & = G_{i_{0}+1 }= \cdots = G_{i_{0}+ p i_1 } &&= G^{i_0+1} = \cdots = G^{i_0+i_1}
|
|
\nonumber \\
|
|
G(2) &= G_{i_0+p i_1 +1} = \cdots = G_{i_0 +p i_1 + p^2 i_2} & &= G^{i_0+i_1+1} = \cdots = G^{i_0+ i_1 +i_2} \nonumber
|
|
\end{align}
|
|
We also set $i_{-1}=-1$.
|
|
This means that the lower jumps occur at the integers
|
|
\[
|
|
i_0, i_0+i_1 p, i_0+ i_1 p + i_2 p^2, \ldots , i_0 + i_1 p + i_2 p^2 + \cdots i_{n-1} p^{n-1}
|
|
\]
|
|
while the upper jumps occur at
|
|
\[
|
|
i_0, i_0+i_1, i_0+ i_1 + i_2, \ldots , i_0 + i_1 + i_2 + \cdots i_{n-1}
|
|
\]
|
|
%
|
|
\begin{definition}
|
|
Let for any $\ZZ/p^n$-cover $X \to Y$
|
|
%
|
|
{\color{blue}
|
|
\begin{align*}
|
|
u_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_P^{(t)} \cong \ZZ/p^{n-t} \},\\
|
|
l_{X/Y, P}^{(t)} &:= \min \{ t \ge 0 : G_{P, t} \cong \ZZ/p^{n-t} \}.
|
|
\end{align*}
|
|
}
|
|
|
|
{\color{red}
|
|
\begin{align*}
|
|
u_{X/Y, P}^{(t)} &:= \min \{ \nu \ge 0 : G_P^{(\nu)} \cong \ZZ/p^{n-t} \},\\
|
|
l_{X/Y, P}^{(t)} &:= \min \{ \nu \ge 0 : G_{P, \nu} \cong \ZZ/p^{n-t} \}.
|
|
\end{align*}
|
|
but maybe you mean
|
|
\begin{align}
|
|
u_{X/Y, P}^{(t)} &:= \min \{ \nu \ge 0 : G_P^{(\nu)} \cong \ZZ/p^{n-t} \}-1,\\
|
|
l_{X/Y, P}^{(t)} &:= \min \{ \nu \ge 0 : G_{P, \nu} \cong \ZZ/p^{n-t} \}-1.
|
|
\end{align}
|
|
}
|
|
{\color{green}
|
|
Adding one to usual jumps was unitentional. It doesn't change any thing in the formula for $H^1_{dR}(X)$ (we have differences there),
|
|
but let's return to the usual definition of ramification jumps.
|
|
}
|
|
\end{definition}
|
|
%
|
|
{\color{blue}
|
|
Note that if $G_P = \ZZ/p^n$, this coincides with the standard definition of
|
|
the $t$th upper (resp. lower) ramification jump of $X \to Y$ at $P$.
|
|
If $G_P = \ZZ/p^m$, then (??relation with usual jumps??). By Hasse--Arf theorem (cf. ???),
|
|
the numbers $u_{X/Y, P}^{(t)}$ are integers.
|
|
%
|
|
}
|
|
Observe that if $G_P= \ZZ/ p^{n}$ with corresponding integers $i_0=i_0(P), \ldots , i_{n-1}=i_{n-1}(P)$ at $P$ then eq. (\ref{eq:serreI}) gives us
|
|
\begin{align*}
|
|
l^{(t)}_{X/Y,P} &=
|
|
\begin{cases}
|
|
0 , &\text{ if } t=0 \\
|
|
i_0 + i_{1} p+ \cdots+ i_{t-1} p^{t-1}
|
|
% {\color{blue} +1}, &\text{ if } t>0 \\
|
|
\end{cases}
|
|
\\
|
|
u^{(t)}_{X/Y,P} &=
|
|
\begin{cases}
|
|
0 , &\text{ if } t=0 \\
|
|
i_0 + i_{1} + \cdots+ i_{t-1}
|
|
% {\color{blue} +1}, &\text{ if } t>0 \\
|
|
\end{cases}
|
|
\end{align*}
|
|
% that is not the upper jump but the next number.
|
|
We then have:
|
|
\[
|
|
i_{j-1} =u_{X/Y,P}^{(j)}-u_{X /Y,P}^{(j-1)}= \frac{1}{p^{j-1}} (l_{X/ Y,P}^{j} - l_{X/ Y,P}^{j-1}) = \frac{1}{p^{j-1}} p^{j-1} i_{j-1}
|
|
\]
|
|
{\color{red} you have written it in the other way out, do you agree?}
|
|
{\color{green} Yes, it was the other way around!}
|
|
|
|
% Now the ramification jumps for a subgroup I thing are a little bit different from what you write.
|
|
|
|
The lower ramification jumps for the subgroup $ \mathbb{Z}/p^{n-N} =G(N)$ are given by
|
|
\begin{align*}
|
|
I_0(N) &=i_0 + i_1 p + \cdots + i_{N} p^{t},\\
|
|
I_0(N) + p^{N+1} i_{i+1} &=I_0(N)+ p I_1(N),\\
|
|
I_0(N) + p I_1(N) + p^{N+2} i_{N+2} &= I_0(N) + p I_1(N) + p^2 I_2(N),\\
|
|
\ldots
|
|
\end{align*}
|
|
that is
|
|
\begin{align*}
|
|
I_0(N)&= i_0 + i_1 p + \cdots + i_{N} p^{N},\\
|
|
I_1(N)&= p^N i_{N+1},
|
|
\\
|
|
I_2(N)& = p^N i_{N+2},\\
|
|
\ldots
|
|
\end{align*}
|
|
This proves that if $\Gal(X/ X^{\prime} )= G(N)$ then
|
|
\begin{align*}
|
|
l_{X/X^{\prime},P}^{(t)} &=I_0 + I_1 p + \cdots + I_{t-1}p^{t-1}+1\\
|
|
&=
|
|
i_0 + i_1 p + \cdots + i_{t+N-1} p^{t+N-1}+1\\
|
|
&= l_{X/Y,P}^{(t+N)}
|
|
\end{align*}
|
|
and
|
|
\begin{align*}
|
|
u_{X/X^{\prime},P}^{(t)} &=I_0 + I_1 + \cdots + I_{t-1}+1\\
|
|
&=
|
|
(i_0 + i_1 p + \cdots + i_{N} p^{N})+ i_{N+1} p^N + \cdots + i_{N+t} p^N + 1\\
|
|
&=
|
|
\end{align*}
|
|
\vskip 2cm
|
|
Assume now that $X \to Y$ is not \'{e}tale. Therefore $X \to X''$ is also not \'{e}tale.
|
|
$\Gal(X / X'')= \ZZ/p$ and $\Gal(X /Y^{\prime} ) = \ZZ/p^{n-1}$.
|
|
\[
|
|
\xymatrix{
|
|
& X \ar[dl]_{ \ZZ / p\cong \langle \sigma^{p^{n-1} } \rangle } \ar[dr]^{H^{\prime} =\langle \sigma^p \rangle \cong \ZZ / p^{n-1} =G(1) } \\
|
|
X '' \ar[dr]& & Y^{\prime} \ar[dl] \\
|
|
& Y
|
|
}
|
|
\]
|
|
|
|
|
|
Note that for any $P \in X(k)$:
|
|
{\color{blue}
|
|
%
|
|
\begin{equation}
|
|
\label{eq:pul}
|
|
p \cdot u^{(n)}_{X/Y, P} = u^{(n-1)}_{X/Y', P} + (p-1) \cdot l^{(1)}_{Y'/Y, Q},
|
|
\end{equation}
|
|
%
|
|
}
|
|
Indeed, {\color{blue} blue color means that it is going to be erased}
|
|
{\color{red}
|
|
\begin{align}
|
|
u^{(n)}_{X/ Y, P } &= (i_0 + i_1 + \cdots + i_{n-1}
|
|
{\color{blue} +1 } ) \\
|
|
u^{(n-1)}_{X/Y', P} &= (i_0 + i_1 p) + i_2 p + \cdots + i_{1+n-1} p
|
|
{\color{blue} +1}
|
|
\\ \label{eq:l1}
|
|
l^{(1)}_{Y'/Y, Q} &= u^{(1)}_{Y^{\prime} /Y,Q}= u^{(1)}_{(X/ Y,Q)} = l^{(1)}_{(X/ Y,Q)} = i_0
|
|
{\color{blue} + 1}.
|
|
\end{align}
|
|
}
|
|
where $Q$ denotes the image of~$P$ in~$Y'$.
|
|
|
|
Riemann Hurwitz formula for the cover $Y^{\prime} / Y$, together with eq. (\ref{eq:l1}), implies that
|
|
\begin{equation}
|
|
\label{eq:RH}
|
|
2(g_{Y^{\prime} }-1) =
|
|
2p(g_Y- 1) + \sum_{P\in Y^{\prime} (k)} (p-1)(l^{(1)}_{Y^{\prime} / Y}+1)
|
|
\end{equation}
|
|
By induction hypothesis for $H'$ acting on $X$, we have the following isomorphism of $k[H']$-modules:
|
|
%
|
|
\[
|
|
\mc M \cong \mc J_{p^{n-1}}^{2 (g_{Y'} - 1)} \oplus \mc J_{p^{n-1} - p^{n - m} + 1}^2 \oplus \bigoplus_{\substack{P \in X(k)\\
|
|
P \neq P_0}} \mc J_{p^{n-1} - p^{n-1}/e'_P}^2
|
|
\oplus \bigoplus_{P \in X(k)} \bigoplus_{t = 0}^{n-2} \mc J_{p^n - p^t}^{u_{X/Y', P}^{(t+1)} - u_{X/Y', P}^{(t)}}
|
|
\]
|
|
%
|
|
where $e'_P := e_{X/Y', P}$.
|
|
{\color{green} The formula above needs a correction -- I want to sum over branch locus in $Y(k)$! This matters if the cover is not completely ramified.}
|
|
%
|
|
\begin{align*}
|
|
\dim_k \mc T^i \mc M &=
|
|
2(g_{Y'} - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y', P}^{(n-1)} - 1)\\
|
|
&
|
|
\stackrel{(\ref{eq:RH})}{=} 2 p (g_Y - 1) + \sum_{Q \in Y'(k)} (p-1) \cdot (l_{Y'/Y, Q}^{(1)} + 1)\\
|
|
&+ 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y', P}^{(n-1)} - 1)\\
|
|
&
|
|
\stackrel{(\ref{eq:pul})}{=} p \cdot \left( 2(g_Y - 1) + 2\# R
|
|
{\color{red}/p}
|
|
{\color{red}+
|
|
\frac{1}{p}\sum_{Q \in Y'(k)} (p-1)
|
|
}
|
|
+ \sum_{P \in X(k)} (u_{X/Y, P}^{(n)} - 1
|
|
{\color{red}/p}
|
|
) \right)
|
|
\\
|
|
&=
|
|
{\color{red}
|
|
p \cdot \left( 2(g_Y - 1) + \# R
|
|
+ \sum_{P \in R} u_{X/Y, P}^{(n)}
|
|
\right)
|
|
}
|
|
\end{align*}
|
|
{\color{red}
|
|
I guess that we want to combine
|
|
$2\# R/ p + \frac{1}{p}\sum_{Q \in Y'(k)} (p-1)$ together. This depends on the ramification of all ramified points in $H^{\prime}$...
|
|
}
|
|
%
|
|
where
|
|
%
|
|
\[ R := \{ P \in X(k) : e_P > 1 \} = \{ P \in X(k) : e'_P > 1 \}. \]
|
|
%
|
|
In particular, $\dim_k \mc T^1 \mc M = \ldots = \dim_k \mc T^{p^{n-1} - p^{n-2}} \mc M$.
|
|
Thus by Lemma~\ref{lem:lemma_mcT_and_T}
|
|
%
|
|
\begin{align*}
|
|
\dim_k T^1 \mc M &= \ldots = \dim_k T^{p^n - p^{n-1}} \mc M = \frac{1}{p} \dim_k \mc T^1 \mc M\\
|
|
&= 2(g_Y - 1) + 2 + 2(\# R - 1) + \sum_{P \in X(k)} (u_{X/Y, P}^{(n)} - 1).
|
|
\end{align*}
|
|
%
|
|
By Lemma~\ref{lem:trace_surjective} since $X \to X''$ is not \'{e}tale, the map $\tr_{X/X''} : H^1_{dR}(X) \to H^1_{dR}(X'')$ is surjective. Recall that
|
|
in $\FF_p[x]$ we have the identity:
|
|
%
|
|
\[
|
|
1 + x + \ldots + x^{p-1} = (x - 1)^{p-1}.
|
|
\]
|
|
%
|
|
Therefore in the group ring $k[H]$ we have:
|
|
%
|
|
\[
|
|
\tr_{X/X''} = \sum_{j = 0}^{p-1} (\sigma^{p^{n-1}})^j = (\sigma^{p^{n-1}} - 1)^{p-1} =
|
|
(\sigma - 1)^{p^n - p^{n-1}}.
|
|
\]
|
|
%
|
|
This implies that:
|
|
%
|
|
\[
|
|
\ker(\tr_{X/X''} : \mc M \to \mc M'') = \mc M^{(p^n - p^{n-1})}
|
|
\]
|
|
%
|
|
and that $\tr_{X/X''}$ induces a $k$-linear isomorphism $T^{i + p^n - p^{n-1}} \mc M \to \mc T^i \mc M''$ for any $i \ge 1$. Thus:
|
|
%
|
|
\[
|
|
\dim_k T^{i + p^n - p^{n-1}} \mc M = \dim_k \mc T^i \mc M'' = ....
|
|
\]
|
|
%
|
|
This ends the proof.
|
|
|
|
|
|
\end{document} |