2024-11-04 20:37:23 +01:00
\documentclass [10pt] { amsart}
\usepackage { calrsfs}
\usepackage { amsmath,tikz}
\usetikzlibrary { tikzmark,fit}
\newcommand \bigzero { \makebox (0,0){ \text { \huge 0} } }
\usepackage [greek,english] { babel}
% \usepackage[iso-8859-7]{inputenc}
\usepackage { graphicx}
%\usepackage{hyperref}
\usepackage { amsthm}
\usepackage { amssymb}
\usepackage { multirow}
\usepackage { tikz-cd}
\usepackage { amsmath}
\usepackage { todonotes}
\usepackage { amsbsy}
\usepackage [all] { xy}
\usepackage { qtree}
% \usepackage{comment}
\usepackage { enumitem}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage { xfrac}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage { color, colortbl}
\definecolor { LightCyan} { rgb} { 0.88,1,1}
\definecolor { Gray} { gray} { 0.9}
\usepackage { faktor}
\usepackage { changes}
\definechangesauthor [color=orange,name={Aristidesd Kontogeorgis}] { AK}
\definechangesauthor [color=blue,name={Alex Terezakis}] { AT}
\usepackage { longtable,booktabs}
\usepackage { float} %gia to figure[H] na mpainei to figure ekei pou prepei
% \usepackage[linenumbers]{MagmaTeX}
%\magmanames(depthFirstSearch,nodeVisitor,strongComponents,acyclicQuotient,transitiveQuotient)
%\setlength\textwidth{14cm}
% \setlength\textwidth{15cm} \setlength\topmargin{0pt}
% \addtolength\topmargin{-\headheight}
% \addtolength\topmargin{-\headsep}
% \setlength\textheight{8.9in}
% \setlength\oddsidemargin{0pt} \setlength\evensidemargin{0pt}
% \setlength\marginparwidth{0.5in}
%\setlength\textwidth{5.5in}
%d
% \newtheorem{proposition}{Proposition}
% % \numberwithin{proposition}{subsection}
% \numberwithin{proposition}
% \newtheorem{lemma}{Lemma}
% \numberwithin{lemma}{subsection}
% \newtheorem{example}{Example}
% \numberwithin{example}{subsection}
% \newtheorem{definition}{Definition}
% \numberwithin{definition}{subsection}
% \newtheorem{exercise}{Exercise}
% \numberwithin{exercise}{subsection}
% \newtheorem{corollary}{Corollary}
% \numberwithin{corollary}{subsection}
% \newtheorem{comments}{Comments}
% \numberwithin{comments}{subsection}
% \newtheorem{examples}{Examples}
% \numberwithin{examples}{subsection}
% \newtheorem{theorem}{Theorem}
% \numberwithin{theorem}{subsection}
% \newtheorem{problem}{Problem}
% \numberwithin{problem}{subsection}
\newtheorem { theorem} { Theorem}
\newtheorem { lemma} [theorem]{ Lemma}
\newtheorem { corollary} [theorem]{ Corollary}
\newtheorem { proposition} [theorem]{ Proposition}
\theoremstyle { definition}
\newtheorem { example} [theorem]{ Example}
\newtheorem { remark} [theorem]{ Remark}
\newtheorem { definition} [theorem]{ Definition}
\newtheorem { convention} [theorem]{ Convention}
\newtheorem { problem} { Problem}
\newcommand { \Ker } { \mathrm Ker}
\newcommand { \adj } { \mathrm adj}
\newcommand { \nullspace } { \mathrm Null}
\newcommand { \la } { \latintext }
\newcommand { \slg } { \selectlanguage { greek} }
\renewcommand { \Im } { \mathrm Im}
\newcommand { \Char } { \mathrm char}
\newcommand { \Diff } { \mathrm Diff}
\newcommand { \Spe } { \mathrm Spec }
\newcommand { \mdeg } { \mathrm mdeg}
\newcommand { \lc } { \left \lceil }
\newcommand { \rc } { \right \rceil }
\newcommand { \lf } { \left \lfloor }
\newcommand { \rf } { \right \rfloor }
\newcommand { \Z } { \mathbb { Z} }
\newcommand { \R } { \mathbb { R} }
% \newcommand{\C}{\mathbb{C}}
\newcommand { \Q } { \mathbb { Q} }
\newcommand { \Heis } { \mathrm Heis}
\newcommand { \Fer } { \mathrm Fer}
\newcommand { \Dgl } { { D_ { \mathrm gl} } }
\newcommand { \codim } { { \mathrm codim} }
\newcommand { \init } { { \mathrm in_ \prec } }
\newcommand { \HomC } { \mathcal { H} \! \mathit { om} }
\DeclareMathOperator { \Ima } { Im}
\newcommand { \cL } { { \mathcal { L} } }
\newcommand { \Id } { { \mathrm Id} }
% \newcommand{\Hom}{{\mathrm Hom}}
\newcommand { \tg } { { \mathrm tg} }
\newcommand { \cO } { { \mathcal { O} } }
\newcommand { \TO } { { \mathcal { T} _ \mathcal { O} } }
\newcommand { \T } { { \mathcal { T} } }
% \newcommand{\Aut}{{ \mathrm Aut }}
\newcommand { \Fp } { { \mathbb { F} _ p} }
\newcommand { \F } { { \mathbb { F} } }
\newcommand { \im } { { \mathrm Im } }
\renewcommand { \O } { { \mathcal { O} } }
% \newcommand{\asp}{ \begin{array}{c} \; \\ \; \\mathrm{end}{array}}
% \newcommand{\Gal}{\mathrm{Gal}}
\renewcommand { \mod } { { \; \mathrm { mod} } }
\newcommand { \G } { { \mathcal { G} } }
\newcommand { \rad } { { \mathrm rad} }
\newcommand { \Rgl } { R}
\newcommand { \m } { \mathfrak { m} }
\newcommand { \bb } { \textbf }
\newcommand { \uu } { \underline }
\newcommand { \ol } { \overline }
\newcommand { \mc } { \mathcal }
\newcommand { \wh } { \widehat }
\newcommand { \wt } { \widetilde }
\newcommand { \mf } { \mathfrak }
\newcommand { \ms } { \mathscr }
\renewcommand { \AA } { \mathbb { A} }
\newcommand { \II } { \mathbb { I} }
\newcommand { \HH } { \mathbb { H} }
\newcommand { \ZZ } { \mathbb { Z} }
\newcommand { \CC } { \mathbb { C} }
\newcommand { \RR } { \mathbb { R} }
\newcommand { \PP } { \mathbb { P} }
\newcommand { \QQ } { \mathbb { Q} }
\newcommand { \LL } { \mathbb { L} }
\newcommand { \NN } { \mathbb { N} }
\newcommand { \FF } { \mathbb { F} }
\newcommand { \VV } { \mathbb { V} }
\newcommand { \ddeg } { \textbf { deg} \, }
\DeclareMathOperator { \SSh } { -Sh}
\DeclareMathOperator { \Ind } { Ind}
\DeclareMathOperator { \pr } { pr}
\DeclareMathOperator { \tr } { tr}
\DeclareMathOperator { \Sh } { Sh}
\DeclareMathOperator { \diag } { diag}
\DeclareMathOperator { \sgn } { sgn}
\DeclareMathOperator { \Divv } { Div}
\DeclareMathOperator { \Coind } { Coind}
\DeclareMathOperator { \coker } { coker}
% \DeclareMathOperator{\im}{im}
\DeclareMathOperator { \id } { id}
\DeclareMathOperator { \Tot } { Tot}
\DeclareMathOperator { \Span } { Span}
\DeclareMathOperator { \res } { res}
\DeclareMathOperator { \Gl } { Gl}
\DeclareMathOperator { \Sl } { Sl}
\DeclareMathOperator { \GCD } { GCD}
\DeclareMathOperator { \ord } { ord}
\DeclareMathOperator { \Spec } { Spec}
\DeclareMathOperator { \rank } { rank}
\DeclareMathOperator { \Gal } { Gal}
\DeclareMathOperator { \Proj } { Proj}
\DeclareMathOperator { \Ext } { Ext}
\DeclareMathOperator { \Hom } { Hom}
\DeclareMathOperator { \End } { End}
\DeclareMathOperator { \cha } { char}
\DeclareMathOperator { \Cl } { Cl}
\DeclareMathOperator { \Jac } { Jac}
\DeclareMathOperator { \Lie } { Lie}
\DeclareMathOperator { \GSp } { GSp}
\DeclareMathOperator { \Sp } { Sp}
\DeclareMathOperator { \Sym } { Sym}
\DeclareMathOperator { \qlog } { qlog}
\DeclareMathOperator { \Aut } { Aut}
\DeclareMathOperator { \divv } { div}
\DeclareMathOperator { \mmod } { -mod}
\DeclareMathOperator { \ev } { ev}
\DeclareMathOperator { \Indec } { Indec}
\DeclareMathOperator { \pole } { pole}
% \DeclareMathOperator{\Ima}{Im}
% \newcommand{\defeq}{\mathrel{\vcenter{\baselineskip0.5ex \lineskiplimit0pt
% \hbox{\scriptsize.}\hbox{\scriptsize.}}}%
\newcommand \overmat [2] { %
\makebox [0pt] [l] { $ \smash { \color { white } \overbrace { \phantom { %
\begin { matrix} #2\end { matrix} } } ^ { \text { \color { black} #1} } } $ } # 2 }
\newcommand \bovermat [2] { %
\makebox [0pt] [l] { $ \smash { \overbrace { \phantom { %
\begin { matrix} #2\end { matrix} } } ^ { \text { #1} } } $ } # 2 }
\date { \today }
\title { Galois Action on Homology of the Heisenberg Curve.}
% \author[A. Kontogeorgis]{Aristides Kontogeorgis}
% \address{Department of Mathematics, National and Kapodistrian University of Athens
% Pane\-pist\-imioupolis, 15784 Athens, Greece}
% \email{kontogar@math.uoa.gr}
% \author[D. Noulas]{Dimitrios Noulas}
% \address{Department of Mathematics, National and Kapodistrian University of Athens\\
% Panepistimioupolis, 15784 Athens, Greece}
% \email{dnoulas@math.uoa.gr}
% \author[I. Tsouknidas]{Ioannis Tsouknidas }
% \address{Department of Mathematics, National and Kapodistrian University of Athens\\
% Panepistimioupolis, 15784 Athens, Greece}
% \email{iotsouknidas@math.uoa.gr}
\date \today
\makeatletter
\newcommand { \aprod } { \mathop { \operator @font \hbox { \Large $ \ast $ } } }
\makeatother
%\renewcommand{\thefootnote}{\fnsymbol{footnote}}
\begin { document}
\section { Cyclic Ramification}
Serre Local fields p. 77 Hasse- Arf for cyclic groups.
For a cyclic group $ G = \mathbb { Z } / p ^ n $ and $ G ( i ) = \mathbb { Z } / p ^ { n - i } $ , there are integers $ i _ 0 ,i _ 1 , \ldots , i _ { n - 1 } > 0 $ such that
\begin { align}
\label { eq:serreI}
G(0) & =G_ 0= \cdots = G_ { i_ 0} & & =G^ 0 = \cdots = G^ { i_ 0} \\
G(1) & = G_ { i_ { 0} +1 } = \cdots = G_ { i_ { 0} + p i_ 1 } & & = G^ { i_ 0+1} = \cdots = G^ { i_ 0+i_ 1}
\nonumber \\
G(2) & = G_ { i_ 0+p i_ 1 +1} = \cdots = G_ { i_ 0 +p i_ 1 + p^ 2 i_ 2} & & = G^ { i_ 0+i_ 1+1} = \cdots = G^ { i_ 0+ i_ 1 +i_ 2} \nonumber
\end { align}
We also set $ i _ { - 1 } = - 1 $ .
This means that the lower jumps occur at the integers
\[
i_ 0, i_ 0+i_ 1 p, i_ 0+ i_ 1 p + i_ 2 p^ 2, \ldots , i_ 0 + i_ 1 p + i_ 2 p^ 2 + \cdots i_ { n-1} p^ { n-1}
\]
while the upper jumps occur at
\[
i_ 0, i_ 0+i_ 1, i_ 0+ i_ 1 + i_ 2, \ldots , i_ 0 + i_ 1 + i_ 2 + \cdots i_ { n-1}
\]
%
\begin { definition}
Let for any $ \ZZ / p ^ n $ -cover $ X \to Y $
%
{ \color { blue}
\begin { align*}
u_ { X/Y, P} ^ { (t)} & := \min \{ t \ge 0 : G_ P^ { (t)} \cong \ZZ /p^ { n-t} \} ,\\
l_ { X/Y, P} ^ { (t)} & := \min \{ t \ge 0 : G_ { P, t} \cong \ZZ /p^ { n-t} \} .
\end { align*}
}
{ \color { red}
\begin { align*}
u_ { X/Y, P} ^ { (t)} & := \min \{ \nu \ge 0 : G_ P^ { (\nu )} \cong \ZZ /p^ { n-t} \} ,\\
l_ { X/Y, P} ^ { (t)} & := \min \{ \nu \ge 0 : G_ { P, \nu } \cong \ZZ /p^ { n-t} \} .
\end { align*}
but maybe you mean
\begin { align}
u_ { X/Y, P} ^ { (t)} & := \min \{ \nu \ge 0 : G_ P^ { (\nu )} \cong \ZZ /p^ { n-t} \} -1,\\
l_ { X/Y, P} ^ { (t)} & := \min \{ \nu \ge 0 : G_ { P, \nu } \cong \ZZ /p^ { n-t} \} -1.
\end { align}
}
2024-11-14 20:00:07 +01:00
{ \color { green}
Adding one to usual jumps was unitentional. It doesn't change any thing in the formula for $ H ^ 1 _ { dR } ( X ) $ (we have differences there),
but let's return to the usual definition of ramification jumps.
}
2024-11-04 20:37:23 +01:00
\end { definition}
%
{ \color { blue}
Note that if $ G _ P = \ZZ / p ^ n $ , this coincides with the standard definition of
the $ t $ th upper (resp. lower) ramification jump of $ X \to Y $ at $ P $ .
If $ G _ P = \ZZ / p ^ m $ , then (??relation with usual jumps??). By Hasse--Arf theorem (cf. ???),
the numbers $ u _ { X / Y, P } ^ { ( t ) } $ are integers.
%
}
Observe that if $ G _ P = \ZZ / p ^ { n } $ with corresponding integers $ i _ 0 = i _ 0 ( P ) , \ldots , i _ { n - 1 } = i _ { n - 1 } ( P ) $ at $ P $ then eq. (\ref { eq:serreI} ) gives us
\begin { align*}
l^ { (t)} _ { X/Y,P} & =
\begin { cases}
0 , & \text { if } t=0 \\
i_ 0 + i_ { 1} p+ \cdots + i_ { t-1} p^ { t-1}
% {\color{blue} +1}, &\text{ if } t>0 \\
\end { cases}
\\
u^ { (t)} _ { X/Y,P} & =
\begin { cases}
0 , & \text { if } t=0 \\
i_ 0 + i_ { 1} + \cdots + i_ { t-1}
% {\color{blue} +1}, &\text{ if } t>0 \\
\end { cases}
\end { align*}
% that is not the upper jump but the next number.
We then have:
\[
i_ { j-1} =u_ { X/Y,P} ^ { (j)} -u_ { X /Y,P} ^ { (j-1)} = \frac { 1} { p^ { j-1} } (l_ { X/ Y,P} ^ { j} - l_ { X/ Y,P} ^ { j-1} ) = \frac { 1} { p^ { j-1} } p^ { j-1} i_ { j-1}
\]
{ \color { red} you have written it in the other way out, do you agree?}
2024-11-14 20:00:07 +01:00
{ \color { green} Yes, it was the other way around!}
2024-11-04 20:37:23 +01:00
% Now the ramification jumps for a subgroup I thing are a little bit different from what you write.
The lower ramification jumps for the subgroup $ \mathbb { Z } / p ^ { n - N } = G ( N ) $ are given by
\begin { align*}
I_ 0(N) & =i_ 0 + i_ 1 p + \cdots + i_ { N} p^ { t} ,\\
I_ 0(N) + p^ { N+1} i_ { i+1} & =I_ 0(N)+ p I_ 1(N),\\
I_ 0(N) + p I_ 1(N) + p^ { N+2} i_ { N+2} & = I_ 0(N) + p I_ 1(N) + p^ 2 I_ 2(N),\\
\ldots
\end { align*}
that is
\begin { align*}
I_ 0(N)& = i_ 0 + i_ 1 p + \cdots + i_ { N} p^ { N} ,\\
I_ 1(N)& = p^ N i_ { N+1} ,
\\
I_ 2(N)& = p^ N i_ { N+2} ,\\
\ldots
\end { align*}
This proves that if $ \Gal ( X / X ^ { \prime } ) = G ( N ) $ then
\begin { align*}
l_ { X/X^ { \prime } ,P} ^ { (t)} & =I_ 0 + I_ 1 p + \cdots + I_ { t-1} p^ { t-1} +1\\
& =
i_ 0 + i_ 1 p + \cdots + i_ { t+N-1} p^ { t+N-1} +1\\
& = l_ { X/Y,P} ^ { (t+N)}
\end { align*}
and
\begin { align*}
u_ { X/X^ { \prime } ,P} ^ { (t)} & =I_ 0 + I_ 1 + \cdots + I_ { t-1} +1\\
& =
(i_ 0 + i_ 1 p + \cdots + i_ { N} p^ { N} )+ i_ { N+1} p^ N + \cdots + i_ { N+t} p^ N + 1\\
& =
\end { align*}
\vskip 2cm
Assume now that $ X \to Y $ is not \' { e} tale. Therefore $ X \to X'' $ is also not \' { e} tale.
$ \Gal ( X / X'' ) = \ZZ / p $ and $ \Gal ( X / Y ^ { \prime } ) = \ZZ / p ^ { n - 1 } $ .
\[
\xymatrix {
& X \ar [dl] _ { \ZZ / p\cong \langle \sigma ^ { p^ { n-1} } \rangle } \ar [dr] ^ { H^ { \prime } =\langle \sigma ^ p \rangle \cong \ZZ / p^ { n-1} =G(1) } \\
X '' \ar [dr] & & Y^ { \prime } \ar [dl] \\
& Y
}
\]
Note that for any $ P \in X ( k ) $ :
{ \color { blue}
%
\begin { equation}
\label { eq:pul}
p \cdot u^ { (n)} _ { X/Y, P} = u^ { (n-1)} _ { X/Y', P} + (p-1) \cdot l^ { (1)} _ { Y'/Y, Q} ,
\end { equation}
%
}
Indeed, { \color { blue} blue color means that it is going to be erased}
{ \color { red}
\begin { align}
u^ { (n)} _ { X/ Y, P } & = (i_ 0 + i_ 1 + \cdots + i_ { n-1}
{ \color { blue} +1 } ) \\
u^ { (n-1)} _ { X/Y', P} & = (i_ 0 + i_ 1 p) + i_ 2 p + \cdots + i_ { 1+n-1} p
{ \color { blue} +1}
\\ \label { eq:l1}
l^ { (1)} _ { Y'/Y, Q} & = u^ { (1)} _ { Y^ { \prime } /Y,Q} = u^ { (1)} _ { (X/ Y,Q)} = l^ { (1)} _ { (X/ Y,Q)} = i_ 0
{ \color { blue} + 1} .
\end { align}
}
where $ Q $ denotes the image of~$ P $ in~$ Y' $ .
Riemann Hurwitz formula for the cover $ Y ^ { \prime } / Y $ , together with eq. (\ref { eq:l1} ), implies that
\begin { equation}
\label { eq:RH}
2(g_ { Y^ { \prime } } -1) =
2p(g_ Y- 1) + \sum _ { P\in Y^ { \prime } (k)} (p-1)(l^ { (1)} _ { Y^ { \prime } / Y} +1)
\end { equation}
By induction hypothesis for $ H' $ acting on $ X $ , we have the following isomorphism of $ k [ H' ] $ -modules:
%
\[
\mc M \cong \mc J_ { p^ { n-1} } ^ { 2 (g_ { Y'} - 1)} \oplus \mc J_ { p^ { n-1} - p^ { n - m} + 1} ^ 2 \oplus \bigoplus _ { \substack { P \in X(k)\\
P \neq P_ 0} } \mc J_ { p^ { n-1} - p^ { n-1} /e'_ P} ^ 2
\oplus \bigoplus _ { P \in X(k)} \bigoplus _ { t = 0} ^ { n-2} \mc J_ { p^ n - p^ t} ^ { u_ { X/Y', P} ^ { (t+1)} - u_ { X/Y', P} ^ { (t)} }
\]
%
where $ e' _ P : = e _ { X / Y', P } $ .
2024-11-14 20:00:07 +01:00
{ \color { green} The formula above needs a correction -- I want to sum over branch locus in $ Y ( k ) $ ! This matters if the cover is not completely ramified.}
2024-11-04 20:37:23 +01:00
%
\begin { align*}
\dim _ k \mc T^ i \mc M & =
2(g_ { Y'} - 1) + 2 + 2(\# R - 1) + \sum _ { P \in X(k)} (u_ { X/Y', P} ^ { (n-1)} - 1)\\
&
\stackrel { (\ref { eq:RH} )} { =} 2 p (g_ Y - 1) + \sum _ { Q \in Y'(k)} (p-1) \cdot (l_ { Y'/Y, Q} ^ { (1)} + 1)\\
& + 2 + 2(\# R - 1) + \sum _ { P \in X(k)} (u_ { X/Y', P} ^ { (n-1)} - 1)\\
&
\stackrel { (\ref { eq:pul} )} { =} p \cdot \left ( 2(g_ Y - 1) + 2\# R
{ \color { red} /p}
{ \color { red} +
\frac { 1} { p} \sum _ { Q \in Y'(k)} (p-1)
}
+ \sum _ { P \in X(k)} (u_ { X/Y, P} ^ { (n)} - 1
{ \color { red} /p}
) \right )
\\
& =
{ \color { red}
p \cdot \left ( 2(g_ Y - 1) + \# R
+ \sum _ { P \in R} u_ { X/Y, P} ^ { (n)}
\right )
}
\end { align*}
{ \color { red}
I guess that we want to combine
$ 2 \# R / p + \frac { 1 } { p } \sum _ { Q \in Y' ( k ) } ( p - 1 ) $ together. This depends on the ramification of all ramified points in $ H ^ { \prime } $ ...
}
%
where
%
\[ R : = \{ P \in X ( k ) : e _ P > 1 \} = \{ P \in X ( k ) : e' _ P > 1 \} . \]
%
In particular, $ \dim _ k \mc T ^ 1 \mc M = \ldots = \dim _ k \mc T ^ { p ^ { n - 1 } - p ^ { n - 2 } } \mc M $ .
Thus by Lemma~\ref { lem:lemma_ mcT_ and_ T}
%
\begin { align*}
\dim _ k T^ 1 \mc M & = \ldots = \dim _ k T^ { p^ n - p^ { n-1} } \mc M = \frac { 1} { p} \dim _ k \mc T^ 1 \mc M\\
& = 2(g_ Y - 1) + 2 + 2(\# R - 1) + \sum _ { P \in X(k)} (u_ { X/Y, P} ^ { (n)} - 1).
\end { align*}
%
By Lemma~\ref { lem:trace_ surjective} since $ X \to X'' $ is not \' { e} tale, the map $ \tr _ { X / X'' } : H ^ 1 _ { dR } ( X ) \to H ^ 1 _ { dR } ( X'' ) $ is surjective. Recall that
in $ \FF _ p [ x ] $ we have the identity:
%
\[
1 + x + \ldots + x^ { p-1} = (x - 1)^ { p-1} .
\]
%
Therefore in the group ring $ k [ H ] $ we have:
%
\[
\tr _ { X/X''} = \sum _ { j = 0} ^ { p-1} (\sigma ^ { p^ { n-1} } )^ j = (\sigma ^ { p^ { n-1} } - 1)^ { p-1} =
(\sigma - 1)^ { p^ n - p^ { n-1} } .
\]
%
This implies that:
%
\[
\ker (\tr _ { X/X''} : \mc M \to \mc M'') = \mc M^ { (p^ n - p^ { n-1} )}
\]
%
and that $ \tr _ { X / X'' } $ induces a $ k $ -linear isomorphism $ T ^ { i + p ^ n - p ^ { n - 1 } } \mc M \to \mc T ^ i \mc M'' $ for any $ i \ge 1 $ . Thus:
%
\[
\dim _ k T^ { i + p^ n - p^ { n-1} } \mc M = \dim _ k \mc T^ i \mc M'' = ....
\]
%
This ends the proof.
\end { document}