mirror of
https://github.com/kalmarek/GroupRings.jl.git
synced 2024-12-29 11:00:28 +01:00
Merge branch 'master' of github.com:kalmarek/GroupRings.jl
This commit is contained in:
commit
d09d85cbd0
@ -1,7 +1,7 @@
|
||||
name = "GroupRings"
|
||||
uuid = "0befed6a-bd73-11e8-1e41-a1190947c2f5"
|
||||
authors = ["Marek Kaluba <kalmar@amu.edu.pl>"]
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
|
||||
[deps]
|
||||
AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d"
|
||||
@ -10,10 +10,8 @@ Markdown = "d6f4376e-aef5-505a-96c1-9c027394607a"
|
||||
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
|
||||
|
||||
[extras]
|
||||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
Groups = "5d8bd718-bd84-11e8-3b40-ad14f4a32557"
|
||||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
|
||||
[targets]
|
||||
test = ["Test", "Groups"]
|
||||
|
||||
[compat]
|
||||
|
@ -1,7 +1,7 @@
|
||||
module GroupRings
|
||||
|
||||
using AbstractAlgebra
|
||||
import AbstractAlgebra: Group, GroupElem, Ring, RingElem, parent, elem_type, parent_type, addeq!, mul!
|
||||
import AbstractAlgebra: Group, NCRing, NCRingElem, parent, elem_type, parent_type, addeq!, mul!
|
||||
|
||||
using SparseArrays
|
||||
using LinearAlgebra
|
||||
@ -9,13 +9,16 @@ using Markdown
|
||||
|
||||
import Base: convert, show, hash, ==, +, -, *, ^, //, /, length, getindex, setindex!, eltype, one, zero
|
||||
|
||||
GroupOrNCRing = Union{AbstractAlgebra.Group, AbstractAlgebra.NCRing}
|
||||
GroupOrNCRingElem = Union{AbstractAlgebra.GroupElem, AbstractAlgebra.NCRingElem}
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# GroupRings / GroupRingsElem
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
mutable struct GroupRing{Gr<:Group, T<:GroupElem} <: Ring
|
||||
mutable struct GroupRing{Gr<:GroupOrNCRing, T<:GroupOrNCRingElem} <: NCRing
|
||||
group::Gr
|
||||
basis::Vector{T}
|
||||
basis_dict::Dict{T, Int}
|
||||
@ -39,7 +42,7 @@ mutable struct GroupRing{Gr<:Group, T<:GroupElem} <: Ring
|
||||
end
|
||||
end
|
||||
|
||||
mutable struct GroupRingElem{T, A<:AbstractVector, GR<:GroupRing} <: RingElem
|
||||
mutable struct GroupRingElem{T, A<:AbstractVector, GR<:GroupRing} <: NCRingElem
|
||||
coeffs::A
|
||||
parent::GR
|
||||
|
||||
@ -98,7 +101,7 @@ import Base.promote_rule
|
||||
promote_rule(::Type{GroupRingElem{T}}, ::Type{GroupRingElem{S}}) where {T,S} =
|
||||
GroupRingElem{promote_type(T,S)}
|
||||
|
||||
function convert(::Type{T}, X::GroupRingElem) where {T<:Number}
|
||||
function convert(::Type{T}, X::GroupRingElem) where T<:Number
|
||||
return GroupRingElem(Vector{T}(X.coeffs), parent(X))
|
||||
end
|
||||
|
||||
@ -112,7 +115,7 @@ end
|
||||
|
||||
zero(RG::GroupRing, T::Type=Int) = RG(T)
|
||||
one(RG::GroupRing, T::Type=Int) = RG(RG.group(), T)
|
||||
one(RG::GroupRing{<:MatSpace}, T::Type=Int) = RG(one(RG.group), T)
|
||||
one(RG::GroupRing{<:AbstractAlgebra.NCRing}, T::Type=Int) = RG(one(RG.group), T)
|
||||
|
||||
function (RG::GroupRing)(T::Type=Int)
|
||||
isdefined(RG, :basis) || throw("Can not coerce without basis of GroupRing")
|
||||
@ -125,19 +128,19 @@ function (RG::GroupRing)(i::Int, T::Type=Int)
|
||||
return elt
|
||||
end
|
||||
|
||||
function (RG::GroupRing{<:MatSpace})(i::Int, T::Type=Int)
|
||||
function (RG::GroupRing{<:AbstractAlgebra.NCRing})(i::Int, T::Type=Int)
|
||||
elt = RG(T)
|
||||
elt[one(RG.group)] = i
|
||||
return elt
|
||||
end
|
||||
|
||||
function (RG::GroupRing)(g::GroupElem, T::Type=Int)
|
||||
function (RG::GroupRing)(g::GroupOrNCRingElem, T::Type=Int)
|
||||
result = RG(T)
|
||||
result[RG.group(g)] = one(T)
|
||||
return result
|
||||
end
|
||||
|
||||
function (RG::GroupRing{Gr,T})(V::Vector{T}, S::Type=Int) where {Gr<:Group, T<:GroupElem}
|
||||
function (RG::GroupRing{Gr,T})(V::Vector{T}, S::Type=Int) where {Gr, T}
|
||||
res = RG(S)
|
||||
for g in V
|
||||
res[g] += one(S)
|
||||
@ -156,7 +159,7 @@ end
|
||||
|
||||
# keep storage type
|
||||
|
||||
function (RG::GroupRing)(x::AbstractVector{T}) where T<:Number
|
||||
function (RG::GroupRing)(x::AbstractVector{T}) where T
|
||||
isdefined(RG, :basis) || throw("Basis of GroupRing not defined. For advanced use the direct constructor of GroupRingElem is provided.")
|
||||
length(x) == length(RG.basis) || throw("Can not coerce to $RG: lengths differ")
|
||||
return GroupRingElem(x, RG)
|
||||
@ -181,7 +184,7 @@ function getindex(X::GroupRingElem, n::Int)
|
||||
return X.coeffs[n]
|
||||
end
|
||||
|
||||
function getindex(X::GroupRingElem, g::GroupElem)
|
||||
function getindex(X::GroupRingElem, g::GroupOrNCRingElem)
|
||||
return X.coeffs[parent(X).basis_dict[g]]
|
||||
end
|
||||
|
||||
@ -189,7 +192,7 @@ function setindex!(X::GroupRingElem, value, n::Int)
|
||||
X.coeffs[n] = value
|
||||
end
|
||||
|
||||
function setindex!(X::GroupRingElem, value, g::GroupElem)
|
||||
function setindex!(X::GroupRingElem, value, g::GroupOrNCRingElem)
|
||||
RG = parent(X)
|
||||
if !(g in keys(RG.basis_dict))
|
||||
g = (RG.group)(g)
|
||||
@ -288,14 +291,14 @@ end
|
||||
|
||||
(-)(X::GroupRingElem) = GroupRingElem(-X.coeffs, parent(X))
|
||||
|
||||
function mul!(a::T, X::GroupRingElem{T}) where {T<:Number}
|
||||
function mul!(a::T, X::GroupRingElem{T}) where T
|
||||
X.coeffs .*= a
|
||||
return X
|
||||
end
|
||||
|
||||
mul(a::T, X::GroupRingElem{T}) where {T<:Number} = GroupRingElem(a*X.coeffs, parent(X))
|
||||
mul(a::T, X::GroupRingElem{T}) where T = GroupRingElem(a*X.coeffs, parent(X))
|
||||
|
||||
function mul(a::T, X::GroupRingElem{S}) where {T<:Number, S<:Number}
|
||||
function mul(a::T, X::GroupRingElem{S}) where {T<:Number, S}
|
||||
TT = promote_type(T,S)
|
||||
TT == S || @warn("Scalar and coeffs are in different rings! Promoting result to $(TT)")
|
||||
return GroupRingElem(a.*X.coeffs, parent(X))
|
||||
@ -343,7 +346,7 @@ end
|
||||
fmac!(result::AbstractVector{T},
|
||||
X::AbstractVector,
|
||||
Y::AbstractVector,
|
||||
pm::Array{Int,2}) where {T<:Number}
|
||||
pm::Array{Int,2}) where T
|
||||
> Fused multiply-add for group ring coeffs using multiplication table `pm`.
|
||||
> The result of X*Y in GroupRing is added in-place to `result`.
|
||||
> Notes:
|
||||
@ -357,7 +360,7 @@ end
|
||||
function fmac!(result::AbstractVector{T},
|
||||
X::AbstractVector,
|
||||
Y::AbstractVector,
|
||||
pm::Array{Int,2}) where {T<:Number}
|
||||
pm::Array{Int,2}) where T
|
||||
z = zero(T)
|
||||
s1 = size(pm,1)
|
||||
s2 = size(pm,2)
|
||||
@ -376,7 +379,7 @@ end
|
||||
|
||||
@doc doc"""
|
||||
GRmul!(result::AbstractVector{T}, X::AbstractVector, Y::AbstractVector,
|
||||
pm::Matrix{<:Integer}) where {T<:Number}
|
||||
pm::Matrix{<:Integer}) where T
|
||||
> The most specialised multiplication for `X` and `Y` (intended for `coeffs` of
|
||||
> `GroupRingElems`), using multiplication table `pm`.
|
||||
> Notes:
|
||||
@ -389,7 +392,7 @@ end
|
||||
function GRmul!(result::AbstractVector{T},
|
||||
X::AbstractVector,
|
||||
Y::AbstractVector,
|
||||
pm::AbstractMatrix{<:Integer}) where {T<:Number}
|
||||
pm::AbstractMatrix{<:Integer}) where T
|
||||
z = zero(T)
|
||||
result .= z
|
||||
|
||||
@ -451,7 +454,7 @@ function mul!(result::GroupRingElem, X::GroupRingElem, Y::GroupRingElem)
|
||||
return result
|
||||
end
|
||||
|
||||
function *(X::GroupRingElem{T}, Y::GroupRingElem{T}, check::Bool=true) where {T<:Number}
|
||||
function *(X::GroupRingElem{T}, Y::GroupRingElem{T}, check::Bool=true) where T
|
||||
if check
|
||||
parent(X) == parent(Y) || throw("Elements don't seem to belong to the same Group Ring!")
|
||||
end
|
||||
@ -465,7 +468,7 @@ function *(X::GroupRingElem{T}, Y::GroupRingElem{T}, check::Bool=true) where {T<
|
||||
return result
|
||||
end
|
||||
|
||||
function *(X::GroupRingElem{T}, Y::GroupRingElem{S}, check::Bool=true) where {T<:Number, S<:Number}
|
||||
function *(X::GroupRingElem{T}, Y::GroupRingElem{S}, check::Bool=true) where {T,S}
|
||||
if check
|
||||
parent(X) == parent(Y) || throw("Elements don't seem to belong to the same Group Ring!")
|
||||
end
|
||||
@ -525,8 +528,8 @@ end
|
||||
|
||||
reverse_dict(iter) = reverse_dict(Int, iter)
|
||||
|
||||
function create_pm(basis::Vector{T}, basis_dict::Dict{T, Int},
|
||||
limit::Int=length(basis); twisted::Bool=false, check=true) where {T<:GroupElem}
|
||||
function create_pm(basis::AbstractVector{T}, basis_dict::Dict{T, Int},
|
||||
limit::Int=length(basis); twisted::Bool=false, check=true) where T
|
||||
product_matrix = zeros(Int, (limit,limit))
|
||||
Threads.@threads for i in 1:limit
|
||||
x = basis[i]
|
||||
@ -543,7 +546,7 @@ function create_pm(basis::Vector{T}, basis_dict::Dict{T, Int},
|
||||
return product_matrix
|
||||
end
|
||||
|
||||
create_pm(b::Vector{T}) where {T<:GroupElem} = create_pm(b, reverse_dict(b))
|
||||
create_pm(b::AbstractVector{<:GroupOrNCRingElem}) = create_pm(b, reverse_dict(b))
|
||||
|
||||
function check_pm(product_matrix, basis, twisted=false)
|
||||
idx = findfirst(product_matrix' .== 0)
|
||||
|
@ -9,7 +9,7 @@ using SparseArrays
|
||||
@testset "Constructors: PermutationGroup" begin
|
||||
G = PermutationGroup(3)
|
||||
|
||||
@test isa(GroupRing(G), AbstractAlgebra.Ring)
|
||||
@test isa(GroupRing(G), AbstractAlgebra.NCRing)
|
||||
@test isa(GroupRing(G), GroupRing)
|
||||
|
||||
RG = GroupRing(G)
|
||||
@ -115,6 +115,20 @@ using SparseArrays
|
||||
@test string(-a) == " - 2() - 1(1,2,3)"
|
||||
|
||||
@test length(a) == 2
|
||||
|
||||
@testset "RSL(3,Z)" begin
|
||||
N = 3
|
||||
halfradius = 2
|
||||
M = MatrixAlgebra(zz, N)
|
||||
E(M, i,j) = (e_ij = one(M); e_ij[i,j] = 1; e_ij)
|
||||
S = [E(M, i,j) for i in 1:N for j in 1:N if i≠j]
|
||||
S = unique([S; inv.(S)])
|
||||
E_R, sizes = Groups.generate_balls(S, radius=2*halfradius)
|
||||
E_rdict = GroupRings.reverse_dict(E_R)
|
||||
pm = GroupRings.create_pm(E_R, E_rdict, sizes[halfradius]; twisted=true);
|
||||
|
||||
@test GroupRing(M, E_R, E_rdict, pm) isa GroupRing
|
||||
end
|
||||
end
|
||||
|
||||
@testset "Arithmetic" begin
|
||||
@ -153,7 +167,7 @@ using SparseArrays
|
||||
@test isa(b//4, GroupRingElem)
|
||||
@test eltype(b//4) == Rational{Int}
|
||||
|
||||
@test isa(b//big(4), RingElem)
|
||||
@test isa(b//big(4), NCRingElem)
|
||||
@test eltype(b//(big(4)//1)) == Rational{BigInt}
|
||||
|
||||
@test isa(a//1, GroupRingElem)
|
||||
|
Loading…
Reference in New Issue
Block a user