GroupRings.jl/src/GroupRings.jl

286 lines
8.1 KiB
Julia

module GroupRings
using Nemo
import Nemo: Group, GroupElem, Ring
import Base: convert, show, isequal, ==
import Base: +, -, *, //
import Base: size, length, norm, rationalize
###############################################################################
#
# GroupRings / GroupRingsElem
#
###############################################################################
type GroupRing <: Ring
group::Group
pm::Array{Int,2}
basis::Vector{GroupElem}
basis_dict::Dict{GroupElem, Int}
GroupRing(G::Group) = new(G)
end
type GroupRingElem{T<:Number}
coeffs::AbstractVector{T}
parent::GroupRing
function GroupRingElem(coeffs::AbstractVector)
return new(coeffs)
end
end
export GroupRing, GroupRingElem
###############################################################################
#
# Type and parent object methods
#
###############################################################################
elem_type(::GroupRing) = GroupRingElem
parent_type(::GroupRingElem) = GroupRing
parent(g::GroupRingElem) = g.parent
###############################################################################
#
# GroupRing / GroupRingElem constructors
#
###############################################################################
GroupRingElem{T}(c::AbstractVector{T}, A::GroupRing) = GroupRingElem{T}(c,A)
convert{T<:Number}(::Type{T}, X::GroupRingElem) =
GroupRingElem(parent(X), convert(AbstractVector{T}, X.coeffs))
function GroupRing(G::Group, pm::Array{Int,2})
size(pm,1) == size(pm,2) || throw("pm must be of size (n,n), got
$(size(pm))")
return GroupRing(Group, pm)
end
function GroupRing(G::Group, pm::Array{Int,2}, basis::Vector)
size(pm,1) == size(pm,2) || throw("pm must be of size (n,n), got
$(size(pm))")
eltype(basis) == elem_type(G) || throw("basis must consist of elements of $G")
basis_dict = Dict(g => i for (i,g) in enumerate(basis))
return GroupRing(Group, pm, basis, basis_dict)
end
function GroupRing(G::Group; complete=false)
A = GroupRing(Group)
if complete
complete(A)
end
return A
end
###############################################################################
#
# Parent object call overloads
#
###############################################################################
function (A::GroupRing)(X::GroupRingElem)
length(X) == length(A.basis) || throw("Can not coerce to $A: lengths differ")
X.parent = A
return X
end
function (A::GroupRing)(x::AbstractVector)
length(x) == length(A.basis) || throw("Can not coerce to $A: lengths differ")
return GroupRingElem(x, A)
end
###############################################################################
#
# Basic manipulation
#
###############################################################################
function deepcopy_internal(X::GroupRingElem, dict::ObjectIdDict)
return GroupRingElem(deepcopy(X.coeffs), parent(X))
end
function hash(X::GroupRingElem, h::UInt)
return hash(X.coeffs, hash(parent(X), h))
end
###############################################################################
#
# String I/O
#
###############################################################################
function show(io::IO, A::GroupRing)
print(io, "GroupRing of $(A.group)")
end
function show(io::IO, X::GroupRingElem)
T = eltype(X.coeffs)
print(io, "Element of Group Algebra of $(parent(X)) over $T:\n $(X.coeffs)")
end
###############################################################################
#
# Comparison
#
###############################################################################
function (==)(X::GroupRingElem, Y::GroupRingElem)
parent(X) == parent(Y) || return false
if eltype(X.coeffs) != eltype(S.coeffs)
warn("Comparing elements with different coeffs Rings!")
end
X.coeffs == Y.coeffs || return false
return true
end
function (==)(A::GroupRing, B::GroupRing)
return A.group == B.group
end
###############################################################################
#
# Scalar operators
#
###############################################################################
(-)(X::GroupRingElem) = GroupRingElem(-X.coeffs, parent(X))
(*){T<:Number}(a::T, X::GroupRingElem{T}) = GroupRingElem(a*X.coeffs, parent(X))
function scalar_multiplication{T<:Number, S<:Number}(a::T,
X::GroupRingElem{S})
promote_type(T,S) == S || warn("Scalar and coeffs are in different rings! Promoting result to $(promote_type(T,S))")
return GroupRingElem(a*X.coeffs, parent(X))
end
end
(*){T<:Number}(a::T,X::GroupRingElem) = scalar_multiplication(a, X)
(/){T<:Number}(a::T, X::GroupRingElem) = scalar_multiplication(1/a, X)
(//){T<:Rational, S<:Rational}(X::GroupRingElem{T}, a::S) =
GroupRingElem(X.coeffs//a, parent(X))
(//){T<:Rational, S<:Integer}(X::GroupRingElem{T}, a::S) =
X//convert(T,a)
###############################################################################
#
# Binary operators
#
###############################################################################
function add{T<:Number}(X::GroupRingElem{T}, Y::GroupRingElem{T})
parent(X) == parent(Y) || throw(ArgumentError(
"Elements don't seem to belong to the same Group Algebra!"))
return GroupRingElem(X.coeffs+Y.coeffs, parent(X))
end
function add{T<:Number, S<:Number}(X::GroupRingElem{T},
Y::GroupRingElem{S})
parent(X) == parent(Y) || throw(ArgumentError(
"Elements don't seem to belong to the same Group Algebra!"))
warn("Adding elements with different base rings!")
return GroupRingElem(+(promote(X.coeffs, Y.coeffs)...), parent(X))
end
(+)(X::GroupRingElem, Y::GroupRingElem) = add(X,Y)
(-)(X::GroupRingElem, Y::GroupRingElem) = add(X,-Y)
function algebra_multiplication{T<:Number}(X::AbstractVector{T},
Y::AbstractVector{T}, pm::Array{Int,2})
result = zeros(X)
for (j,y) in enumerate(Y)
if y != zero(T)
for (i, index) in enumerate(pm[:,j])
if X[i] != zero(T)
index == 0 && throw(ArgumentError("The product don't seem to belong to the span of basis!"))
result[index] += X[i]*y
end
end
end
end
return result
end
function group_star_multiplication{T<:Number}(X::GroupRingElem{T},
Y::GroupRingElem{T})
parent(X) == parent(Y) || throw(ArgumentError(
"Elements don't seem to belong to the same Group Algebra!"))
result = algebra_multiplication(X.coeffs, Y.coeffs, X.pm)
return GroupRingElem(result, parent(X))
end
function group_star_multiplication{T<:Number, S<:Number}(
X::GroupRingElem{T}, Y::GroupRingElem{S})
warn("Multiplying elements with different base rings!")
return group_star_multiplication(promote(X,Y)...)
end
(*)(X::GroupRingElem, Y::GroupRingElem) = group_star_multiplication(X,Y)
###############################################################################
#
# Misc
#
###############################################################################
length(X::GroupRingElem) = length(X.coeffs)
norm(X::GroupRingElem, p=2) = norm(X.coeffs, p)
augmentation(X::GroupRingElem) = sum(X.coeffs)
function rationalize{T<:Integer, S<:Number}(::Type{T}, X::GroupRingElem{S};
tol=eps(S))
v = rationalize(T, X.coeffs, tol=tol)
return GroupRingElem(v, parent(X))
end
function reverse_dict(a::AbstractVector)
return Dict{eltype(a), Int}(x => i for (i,x) in enumerate(a))
end
function create_pm{T<:GroupElem}(basis::Vector{T}, basis_dict::Dict{T, Int},
limit; twisted=false)
product_matrix = zeros(Int, (limit,limit))
for i in 1:limit
x = basis([i])
if twisted
x = inv(x)
end
for j in 1:limit
w = x*basis[j]
product_matrix[i,j] = basis_dict[w]
end
end
return product_matrix
end
function complete(A::GroupRing)
isdefined(A, :basis) || A.basis = collect(elements(A.group))
isdefined(A, :basis_dict) || A.basis_dict = reverse_dict(A.basis)
if !isdefined(A, :pm)
A.pm = try
create_pm(basis, basis_dict)
catch err
isa(err, KeyError) && throw("Product is not supported on basis!"))
throw(err)
end
return A
end
function complete(X::GroupRingElem)
isdefined(X, :parent) || throw("You have to define parent of X before!")
complete(parent(X))
return X
end
end # of module GroupRings