1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-12-26 10:25:30 +01:00
Groups.jl/test/AutGroup-tests.jl

177 lines
5.7 KiB
Julia
Raw Normal View History

2017-05-15 10:12:46 +02:00
@testset "Automorphisms" begin
using Nemo
G = PermutationGroup(4)
@testset "AutSymbol" begin
@test_throws MethodError Groups.AutSymbol("a")
@test_throws MethodError Groups.AutSymbol("a", 1)
2017-05-15 17:30:18 +02:00
f = Groups.AutSymbol("a", 1, :(a()), v -> v)
2017-05-15 10:12:46 +02:00
@test isa(f, Groups.GSymbol)
@test isa(f, Groups.AutSymbol)
@test isa(Groups.perm_autsymbol(G([1,2,3,4])), Groups.AutSymbol)
@test isa(Groups.rmul_autsymbol(1,2), Groups.AutSymbol)
@test isa(Groups.lmul_autsymbol(3,4), Groups.AutSymbol)
@test isa(Groups.flip_autsymbol(3), Groups.AutSymbol)
end
a,b,c,d = generators(FreeGroup(4))
domain = [a,b,c,d]
@testset "flip_autsymbol correctness" begin
@test Groups.flip_autsymbol(1)(domain) == [a^-1, b,c,d]
@test Groups.flip_autsymbol(2)(domain) == [a, b^-1,c,d]
@test Groups.flip_autsymbol(3)(domain) == [a, b,c^-1,d]
@test Groups.flip_autsymbol(4)(domain) == [a, b,c,d^-1]
@test inv(Groups.flip_autsymbol(1))(domain) == [a^-1, b,c,d]
@test inv(Groups.flip_autsymbol(2))(domain) == [a, b^-1,c,d]
@test inv(Groups.flip_autsymbol(3))(domain) == [a, b,c^-1,d]
@test inv(Groups.flip_autsymbol(4))(domain) == [a, b,c,d^-1]
end
@testset "perm_autsymbol correctness" begin
σ = Groups.perm_autsymbol(G([1,2,3,4]))
@test σ(domain) == domain
@test inv(σ)(domain) == domain
σ = Groups.perm_autsymbol(G([2,3,4,1]))
@test σ(domain) == [b, c, d, a]
@test inv(σ)(domain) == [d, a, b, c]
σ = Groups.perm_autsymbol(G([2,1,4,3]))
@test σ(domain) == [b, a, d, c]
@test inv(σ)(domain) == [b, a, d, c]
σ = Groups.perm_autsymbol(G([2,3,1,4]))
@test σ(domain) == [b,c,a,d]
@test inv(σ)(domain) == [c,a,b,d]
end
@testset "rmul/lmul_autsymbol correctness" begin
i,j = 1,2
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(domain) == [a*b,b,c,d]
@test inv(r)(domain) == [a*b^-1,b,c,d]
@test l(domain) == [b*a,b,c,d]
@test inv(l)(domain) == [b^-1*a,b,c,d]
i,j = 3,1
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(domain) == [a,b,c*a,d]
@test inv(r)(domain) == [a,b,c*a^-1,d]
@test l(domain) == [a,b,a*c,d]
@test inv(l)(domain) == [a,b,a^-1*c,d]
i,j = 4,3
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(domain) == [a,b,c,d*c]
@test inv(r)(domain) == [a,b,c,d*c^-1]
@test l(domain) == [a,b,c,c*d]
@test inv(l)(domain) == [a,b,c,c^-1*d]
i,j = 2,4
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(domain) == [a,b*d,c,d]
@test inv(r)(domain) == [a,b*d^-1,c,d]
@test l(domain) == [a,d*b,c,d]
@test inv(l)(domain) == [a,d^-1*b,c,d]
end
@testset "AutGroup/AutGroupElem constructors" begin
2017-05-15 17:30:18 +02:00
f = Groups.AutSymbol("a", 1, :(a()), v -> v)
@test isa(AutGroupElem(f), Groups.GWord)
2017-05-15 10:12:46 +02:00
@test isa(AutGroupElem(f), AutGroupElem)
2017-05-15 17:30:18 +02:00
@test isa(AutGroup(FreeGroup(3)), Nemo.Group)
@test isa(AutGroup(FreeGroup(1)), Groups.FPGroup)
2017-05-15 10:12:46 +02:00
A = AutGroup(FreeGroup(1))
2017-05-15 17:30:18 +02:00
@test isa(generators(A), Vector{AutGroupElem})
@test length(generators(A)) == 1
A = AutGroup(FreeGroup(1), special=true)
@test length(generators(A)) == 0
A = AutGroup(FreeGroup(2))
@test length(generators(A)) == 7
gens = generators(A)
@test isa(A(Groups.rmul_autsymbol(1,2)), AutGroupElem)
@test A(Groups.rmul_autsymbol(1,2)) in gens
@test isa(A(Groups.rmul_autsymbol(2,1)), AutGroupElem)
@test A(Groups.rmul_autsymbol(2,1)) in gens
@test isa(A(Groups.lmul_autsymbol(1,2)), AutGroupElem)
@test A(Groups.lmul_autsymbol(1,2)) in gens
@test isa(A(Groups.lmul_autsymbol(2,1)), AutGroupElem)
@test A(Groups.lmul_autsymbol(2,1)) in gens
@test isa(A(Groups.flip_autsymbol(1)), AutGroupElem)
@test A(Groups.flip_autsymbol(1)) in gens
@test isa(A(Groups.flip_autsymbol(2)), AutGroupElem)
@test A(Groups.flip_autsymbol(2)) in gens
@test isa(A(Groups.perm_autsymbol(PermutationGroup(2)([2,1]))),
AutGroupElem)
@test A(Groups.perm_autsymbol(PermutationGroup(2)([2,1]))) in gens
end
A = AutGroup(FreeGroup(4))
@testset "eltary functions" begin
f = Groups.perm_autsymbol(G([2,3,4,1]))
@test (Groups.change_pow(f, 2)).pow == 1
@test (Groups.change_pow(f, -2)).pow == 1
@test (inv(f)).pow == 1
f = Groups.perm_autsymbol(G([2,1,4,3]))
@test isa(inv(f), Groups.AutSymbol)
@test_throws DomainError f^-1
@test_throws MethodError f*f
@test A(f)^-1 == A(inv(f))
end
@testset "reductions/arithmetic" begin
f = Groups.perm_autsymbol(G([2,3,4,1]))
= Groups.r_multiply(A(f), [f], reduced=false)
@test Groups.simplify_perms!() == false
@test ^2 == A()
a = A(Groups.rmul_autsymbol(1,2))*Groups.flip_autsymbol(2)
b = Groups.flip_autsymbol(2)*A(inv(Groups.rmul_autsymbol(1,2)))
@test a*b == b*a
@test a^3 * b^3 == A()
end
@testset "specific Aut(F4) tests" begin
N = 4
G = AutGroup(FreeGroup(N))
S = G.gens
@test isa(S, Vector{Groups.AutSymbol})
S = [G(s) for s in unique(S)]
@test isa(S, Vector{AutGroupElem})
@test S == generators(G)
@test length(S) == 51
S_inv = [S..., [inv(s) for s in S]...]
@test length(unique(S_inv)) == 75
G = AutGroup(FreeGroup(N), special=true, outer=true)
S = generators(G)
S_inv = [G(), S..., [inv(s) for s in S]...]
S_inv = unique(S_inv)
B_2 = [i*j for (i,j) in Base.product(S_inv, S_inv)]
@test length(B_2) == 2401
@test length(unique(B_2)) == 1777
2017-05-15 10:12:46 +02:00
end
end