1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-11-19 14:35:28 +01:00
Groups.jl/src/WreathProducts.jl

227 lines
6.4 KiB
Julia
Raw Normal View History

export WreathProduct, WreathProductElem
2017-06-22 14:21:25 +02:00
###############################################################################
#
# WreathProduct / WreathProductElem
#
###############################################################################
doc"""
WreathProduct <: Group
> Implements Wreath product of a group N by permutation (sub)group P < Sₖ,
> usually written as $N \wr P$.
> The multiplication inside wreath product is defined as
> (n, σ) * (m, τ) = (n*ψ(σ)(m), σ*τ),
> where ψ:P Aut(Nᵏ) is the permutation representation of Sₖ restricted to P.
# Arguments:
* `::Group` : the single factor of group N
* `::PermutationGroup` : full PermutationGroup
"""
immutable WreathProduct{T<:Group} <: Group
N::DirectProductGroup{T}
P::PermGroup
2017-06-22 14:21:25 +02:00
function WreathProduct(G::Group, P::PermGroup)
N = DirectProductGroup(G, P.n)
2017-06-22 14:21:25 +02:00
return new(N, P)
end
end
immutable WreathProductElem{T<:GroupElem} <: GroupElem
n::DirectProductGroupElem{T}
2017-06-22 14:21:25 +02:00
p::perm
# parent::WreathProduct
2017-06-22 14:21:25 +02:00
function WreathProductElem(n::DirectProductGroupElem, p::perm)
length(n.elts) == parent(p).n || throw("Can't form WreathProductElem: lengths differ")
2017-06-22 14:21:25 +02:00
return new(n, p)
end
end
###############################################################################
#
# Type and parent object methods
#
###############################################################################
elem_type{T<:Group}(G::WreathProduct{T}) =
WreathProductElem{G.N.n, elem_type(T)}
2017-06-22 14:21:25 +02:00
parent_type{T<:GroupElem}(::WreathProductElem{T}) =
WreathProduct{parent_type(T)}
2017-06-22 14:21:25 +02:00
parent(g::WreathProductElem) = WreathProduct(parent(g.n[1]), parent(g.p))
2017-06-22 14:21:25 +02:00
###############################################################################
#
# WreathProduct / WreathProductElem constructors
#
###############################################################################
WreathProduct{T<:Group}(G::T, P::PermGroup) = WreathProduct{T}(G, P)
WreathProductElem{T<:GroupElem}(n::DirectProductGroupElem{T},
p::perm) = WreathProductElem{T}(n, p)
2017-06-22 14:21:25 +02:00
###############################################################################
#
# Parent object call overloads
#
###############################################################################
function (G::WreathProduct)(g::WreathProductElem)
n = try
2017-06-22 14:21:25 +02:00
G.N(g.n)
catch
throw("Can't coerce $(g.n) to $(G.N) factor of $G")
end
p = try
2017-06-22 14:21:25 +02:00
G.P(g.p)
catch
throw("Can't coerce $(g.p) to $(G.P) factor of $G")
end
elt = WreathProductElem(n, p)
# elt.parent = G
2017-06-22 14:21:25 +02:00
return elt
end
doc"""
(G::WreathProduct)(n::DirectProductGroupElem, p::perm)
> Creates an element of wreath product `G` by coercing `n` and `p` to `G.N` and
> `G.P`, respectively.
"""
function (G::WreathProduct)(n::DirectProductGroupElem, p::perm)
result = WreathProductElem(n,p)
2017-07-21 14:23:47 +02:00
# result.parent = G
2017-06-22 14:21:25 +02:00
return result
end
(G::WreathProduct)() = G(G.N(), G.P())
doc"""
(G::WreathProduct)(p::perm)
> Returns the image of permutation `p` in `G` via embedding `p -> (id,p)`.
"""
(G::WreathProduct)(p::perm) = G(G.N(), p)
doc"""
(G::WreathProduct)(n::DirectProductGroupElem)
> Returns the image of `n` in `G` via embedding `n -> (n,())`. This is the
> embedding that makes sequence `1 -> N -> G -> P -> 1` exact.
"""
(G::WreathProduct)(n::DirectProductGroupElem) = G(n, G.P())
###############################################################################
#
# Basic manipulation
#
###############################################################################
function deepcopy_internal(g::WreathProductElem, dict::ObjectIdDict)
return WreathProductElem(deepcopy(g.n), deepcopy(g.p))
2017-06-22 14:21:25 +02:00
end
function hash(G::WreathProduct, h::UInt)
return hash(G.N, hash(G.P, hash(WreathProduct, h)))
end
function hash(g::WreathProductElem, h::UInt)
return hash(g.n, hash(g.p, hash(parent(g), h)))
end
###############################################################################
#
# String I/O
#
###############################################################################
function show(io::IO, G::WreathProduct)
print(io, "Wreath Product of $(G.N.factors[1]) and $(G.P)")
end
function show(io::IO, g::WreathProductElem)
# println(io, "Element of WreathProduct over $T of size $(size(X)):")
# show(io, "text/plain", matrix_repr(X))
print(io, "($(g.n)$(g.p))")
end
###############################################################################
#
# Comparison
#
###############################################################################
function (==)(G::WreathProduct, H::WreathProduct)
G.N == H.N || return false
G.P == H.P || return false
return true
end
function (==)(g::WreathProductElem, h::WreathProductElem)
g.n == h.n || return false
g.p == h.p || return false
return true
end
###############################################################################
#
# Binary operators
#
###############################################################################
function wreath_multiplication(g::WreathProductElem, h::WreathProductElem)
parent(g) == parent(h) || throw("Can not multiply elements from different
groups!")
G = parent(g)
2017-07-16 21:43:43 +02:00
w = G.N((h.n).elts[inv(g.p).d])
2017-06-22 14:21:25 +02:00
return G(g.n*w, g.p*h.p)
end
doc"""
*(g::WreathProductElem, h::WreathProductElem)
> Return the wreath product group operation of elements, i.e.
>
> g*h = (g.n*g.p(h.n), g.p*h.p),
>
> where g.p(h.n) denotes the action of `g.p::perm` on
> `h.n::DirectProductGroupElem` via standard permutation of coordinates.
"""
(*)(g::WreathProductElem, h::WreathProductElem) = wreath_multiplication(g,h)
###############################################################################
#
# Inversion
#
###############################################################################
doc"""
inv(g::WreathProductElem)
> Returns the inverse of element of a wreath product, according to the formula
> g^-1 = (g.n, g.p)^-1 = (g.p^-1(g.n^-1), g.p^-1).
"""
function inv(g::WreathProductElem)
G = parent(g)
w = G.N(inv(g.n).elts[g.p.d])
return G(w, inv(g.p))
end
###############################################################################
#
# Misc
#
###############################################################################
matrix_repr(g::WreathProductElem) = Any[matrix_repr(g.p) g.n]
function elements(G::WreathProduct)
iter = Base.product(collect(elements(G.N)), collect(elements(G.P)))
return (G(n)*G(p) for (n,p) in iter)
end
order(G::WreathProduct) = order(G.P)*order(G.N)