1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-11-19 14:35:28 +01:00
Groups.jl/test/AutSigma_41.jl

274 lines
8.0 KiB
Julia
Raw Normal View History

2021-06-10 12:55:21 +02:00
using PermutationGroups
2021-07-07 10:41:34 +02:00
using Groups.KnuthBendix
2021-06-10 12:55:21 +02:00
@testset "Wajnryb presentation for Σ₄₁" begin
genus = 4
2021-07-07 10:41:34 +02:00
G = SpecialAutomorphismGroup(FreeGroup(2genus))
2021-06-10 12:55:21 +02:00
2021-07-12 11:11:39 +02:00
# symplectic pairing in the free Group goes like this:
2021-07-07 10:41:34 +02:00
# f1 ↔ f5
# f2 ↔ f6
# f3 ↔ f7
# f4 ↔ f8
T = let G = G
(Tas, Tαs, Tes) = Groups.mcg_twists(G)
2021-06-10 12:55:21 +02:00
Ta = G.(Tas)
Tα = G.(Tαs)
Tes = G.(Tes)
[Ta; Tα; Tes]
end
a1 = T[1]^-1 # Ta₁
a2 = T[5]^-1 # Tα
a3 = T[9]^-1 # Te₁₂
a4 = T[6]^-1 # Tα
a5 = T[12]^-1 # Te₂₃
a6 = T[7]^-1 # Tα
a7 = T[14]^-1 # Te₃₄
a8 = T[8]^-1 # Tα
b0 = T[2]^-1 # Ta₂
2021-07-07 10:41:34 +02:00
a0 = (a1 * a2 * a3)^4 * b0^-1 # from the 3-chain relation
X = a4 * a5 * a3 * a4 # auxillary, not present in the Primer
b1 = X^-1 * a0 * X
2021-06-10 12:55:21 +02:00
b2 = T[10]^-1 # Te₁₃
2021-07-07 10:41:34 +02:00
As = T[[1, 5, 9, 6, 12, 7, 14, 8]] # the inverses of the elements a
@testset "preserving relator" begin
F = Groups.object(G)
R = prod(commutator(gens(F, i), gens(F, i+genus)) for i in 1:genus)
## TODO: how to evaluate automorphisms properly??!!!
for g in T
w = one(word(g))
dg = Groups.domain(g)
gens_idcs = first.(word.(dg))
img = evaluate(g)
A = alphabet(first(dg))
ltrs_map = Vector{eltype(dg)}(undef, length(KnuthBendix.letters(A)))
for i in 1:length(KnuthBendix.letters(A))
if i in gens_idcs
ltrs_map[i] = img[findfirst(==(i), gens_idcs)]
else
ltrs_map[i] = inv(img[findfirst(==(inv(A, i)), gens_idcs)])
end
end
for l in word(R)
append!(w, word(ltrs_map[l]))
end
@test F(w) == R
end
end
2021-06-10 12:55:21 +02:00
@testset "commutation relations" begin
for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for commutativity. Also, a0 is as defined before.
for (j, aj) in enumerate(As)
2021-07-07 10:41:34 +02:00
if abs(i - j) > 1
@test ai * aj == aj * ai
2021-06-10 12:55:21 +02:00
elseif i j
2021-07-07 10:41:34 +02:00
@test ai * aj != aj * ai
2021-06-10 12:55:21 +02:00
end
end
if i != 4
2021-07-07 10:41:34 +02:00
@test a0 * ai == ai * a0
2021-06-10 12:55:21 +02:00
end
end
end
@testset "braid relations" begin
for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for braid relations.
for (j, aj) in enumerate(As)
2021-07-07 10:41:34 +02:00
if abs(i - j) == 1
@test ai * aj * ai == aj * ai * aj
2021-06-10 12:55:21 +02:00
end
end
end
2021-07-07 10:41:34 +02:00
@test a0 * a4 * a0 == a4 * a0 * a4 # here, a0 and a4 are as before
2021-06-10 12:55:21 +02:00
end
@testset "Lantern relation" begin
@testset "b2 definition" begin
2021-07-07 10:41:34 +02:00
@test b2 == (a2 * a3 * a1 * a2)^-1 * b1 * (a2 * a3 * a1 * a2)
2021-06-10 12:55:21 +02:00
# some additional tests, checking what explicitly happens to the generators of the π₁ under b2
2021-07-07 10:41:34 +02:00
d = Groups.domain(b2)
im = evaluate(b2)
z = im[7] * d[7]^-1
2021-06-10 12:55:21 +02:00
@test im[1] == d[1]
2021-07-07 10:41:34 +02:00
@test im[2] == z * d[2] * z^-1
@test im[3] == z * d[3] * z^-1
2021-06-10 12:55:21 +02:00
@test im[4] == d[4]
2021-07-07 10:41:34 +02:00
@test im[5] == d[5] * z^-1
@test im[6] == z * d[6] * z^-1
@test im[7] == z * d[7]
2021-06-10 12:55:21 +02:00
@test im[8] == d[8]
end
@testset "b2: commutation relations" begin
2021-07-07 10:41:34 +02:00
@test b2 * a1 == a1 * b2
@test b2 * a2 != a2 * b2
@test b2 * a3 == a3 * b2
@test b2 * a4 == a4 * b2
@test b2 * a5 == a5 * b2
@test b2 * a6 != a6 * b2
2021-06-10 12:55:21 +02:00
end
@testset "b2: braid relations" begin
2021-07-07 10:41:34 +02:00
@test a2 * b2 * a2 == b2 * a2 * b2
@test a6 * b2 * a6 == b2 * a6 * b2
2021-06-10 12:55:21 +02:00
end
@testset "lantern" begin
2021-07-07 10:41:34 +02:00
u = (a6 * a5)^-1 * b1 * (a6 * a5)
x = (a6 * a5 * a4 * a3 * a2 * u * a1^-1 * a2^-1 * a3^-1 * a4^-1) # yet another auxillary
2021-06-10 12:55:21 +02:00
# x = (a4^-1*a3^-1*a2^-1*a1^-1*u*a2*a3*a4*a5*a6)
2021-07-07 10:41:34 +02:00
@time evaluate(x)
b3 = x * a0 * x^-1
@time evaluate(b3)
@test a0 * b2 * b1 == a1 * a3 * a5 * b3
2021-06-10 12:55:21 +02:00
end
end
@testset "Te₁₂ definition" begin
G = parent(first(T))
2021-07-07 10:41:34 +02:00
F₈ = Groups.object(G)
(a, b, c, d, α, β, γ, δ) = Groups.gens(F₈)
2021-06-10 12:55:21 +02:00
2021-07-07 10:41:34 +02:00
A = alphabet(G)
2021-06-10 12:55:21 +02:00
2021-07-07 10:41:34 +02:00
λ = [i == j ? one(G) : G([A[Groups.λ(i, j)]]) for i in 1:8, j in 1:8]
ϱ = [i == j ? one(G) : G([A[Groups.ϱ(i, j)]]) for i in 1:8, j in 1:8]
2021-06-10 12:55:21 +02:00
g = one(G)
# β ↦ α
2021-07-07 10:41:34 +02:00
g *= λ[6, 5]
@test evaluate(g)[6] == α * β
2021-06-10 12:55:21 +02:00
# α ↦ a*α*b^-1
2021-07-07 10:41:34 +02:00
g *= λ[5, 1] * inv(ϱ[5, 2])
@test evaluate(g)[5] == a * α * b^-1
2021-06-10 12:55:21 +02:00
# β ↦ b*α^-1*a^-1*α
2021-07-07 10:41:34 +02:00
g *= inv(λ[6, 5])
@test evaluate(g)[6] == b * α^-1 * a^-1 * α * β
2021-06-10 12:55:21 +02:00
# b ↦ α
2021-07-07 10:41:34 +02:00
g *= λ[2, 5] * inv(λ[2, 1])
@test evaluate(g)[2] == α
2021-06-10 12:55:21 +02:00
# b ↦ b*α^-1*a^-1*α
2021-07-07 10:41:34 +02:00
g *= inv(λ[2, 5])
@test evaluate(g)[2] == b * α^-1 * a^-1 * α
2021-06-10 12:55:21 +02:00
# b ↦ b*α^-1*a^-1*α*b*α^-1
2021-07-07 10:41:34 +02:00
g *= inv(ϱ[2, 5]) * ϱ[2, 1]
@test evaluate(g)[2] == b * α^-1 * a^-1 * α * b * α^-1
2021-06-10 12:55:21 +02:00
# b ↦ b*α^-1*a^-1*α*b*α^-1*a*α*b^-1
2021-07-07 10:41:34 +02:00
g *= ϱ[2, 5]
@test evaluate(g)[2] == b * α^-1 * a^-1 * α * b * α^-1 * a * α * b^-1
2021-06-10 12:55:21 +02:00
2021-07-07 10:41:34 +02:00
x = b * α^-1 * a^-1 * α
@test evaluate(g) ==
(a, x * b * x^-1, c, d, α * x^-1, x * β, γ, δ)
# (a, b, c, d, α, β, γ, δ)
2021-06-10 12:55:21 +02:00
@test g == T[9]
end
2021-07-07 10:41:34 +02:00
Base.conj(t::Groups.Transvection, p::Perm) =
Groups.Transvection(t.id, t.i^p, t.j^p, t.inv)
2021-06-10 12:55:21 +02:00
2021-07-07 10:41:34 +02:00
function Base.conj(elt::FPGroupElement, p::Perm)
2021-06-10 12:55:21 +02:00
G = parent(elt)
2021-07-07 10:41:34 +02:00
A = alphabet(elt)
return G([A[conj(A[idx], p)] for idx in word(elt)])
2021-06-10 12:55:21 +02:00
end
@testset "Te₂₃ definition" begin
Te₁₂, Te₂₃ = T[9], T[12]
G = parent(Te₁₂)
2021-07-07 10:41:34 +02:00
F₈ = Groups.object(G)
(a, b, c, d, α, β, γ, δ) = Groups.gens(F₈)
2021-06-10 12:55:21 +02:00
2021-07-07 10:41:34 +02:00
img_Te₂₃ = evaluate(Te₂₃)
y = c * β^-1 * b^-1 * β
@test img_Te₂₃ == (a, b, y * c * y^-1, d, α, β * y^-1, y * γ, δ)
2021-06-10 12:55:21 +02:00
σ = perm"(1,2,3)(5,6,7)(8)"
Te₂₃_σ = conj(Te₁₂, σ)
2021-07-07 10:41:34 +02:00
# @test word(Te₂₃_σ) == word(Te₂₃)
2021-06-10 12:55:21 +02:00
2021-07-07 10:41:34 +02:00
@test evaluate(Te₂₃_σ) == evaluate(Te₂₃)
2021-06-10 12:55:21 +02:00
@test Te₂₃ == Te₂₃_σ
end
@testset "Te₃₄ definition" begin
Te₁₂, Te₃₄ = T[9], T[14]
G = parent(Te₁₂)
2021-07-07 10:41:34 +02:00
F₈ = Groups.object(G)
2021-06-10 12:55:21 +02:00
(a, b, c, d, α, β, γ, δ) = Groups.gens(F₈)
σ = perm"(1,3)(2,4)(5,7)(6,8)"
Te₃₄_σ = conj(Te₁₂, σ)
@test Te₃₄ == Te₃₄_σ
end
2021-07-07 10:41:34 +02:00
@testset "hyperelliptic τ is central" begin
A = alphabet(G)
λ = Groups.ΡΛ(, A, 2genus)
ϱ = Groups.ΡΛ(:ϱ, A, 2genus)
import Groups: Ta, Tα, Te
halftwists = map(1:genus-1) do i
j = i + 1
x = Ta(λ, j) * inv(A, Ta(λ, i)) * Tα(λ, j) * Te(λ, ϱ, i, j)
δ = x * Tα(λ, i) * inv(A, x)
c =
inv(A, Ta(λ, j)) *
Te(λ, ϱ, i, j) *
Tα(λ, i)^2 *
inv(A, δ) *
inv(A, Ta(λ, j)) *
Ta(λ, i) *
δ
z =
Te(λ, ϱ, j, i) *
inv(A, Ta(λ, i)) *
Tα(λ, i) *
Ta(λ, i) *
inv(A, Te(λ, ϱ, j, i))
G(Ta(λ, i) * inv(A, Ta(λ, j) * Tα(λ, j))^6 * (Ta(λ, j) * Tα(λ, j) * z)^4 * c)
end
τ = (G(Ta(λ, 1) * Tα(λ, 1))^6) * prod(halftwists)
2021-07-07 10:41:34 +02:00
# τ^genus is trivial but only in autπ₁Σ₄
# here we check its centrality
τᵍ = τ^genus
@test_broken all(a * τᵍ == τᵍ * a for a in Groups.gens(G))
end
2021-06-10 12:55:21 +02:00
end