1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-12-24 18:05:27 +01:00

update AutSigma_41 tests

This commit is contained in:
Marek Kaluba 2021-07-07 10:41:34 +02:00
parent eef13c9afa
commit 9415906aa2
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
3 changed files with 161 additions and 74 deletions

View File

@ -15,13 +15,15 @@ AbstractAlgebra = "0.15, 0.16"
GroupsCore = "^0.3"
KnuthBendix = "^0.2.1"
OrderedCollections = "1"
PermutationGroups = "^0.3"
ThreadsX = "^0.1.0"
julia = "1.3, 1.4, 1.5, 1.6"
[extras]
AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d"
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
PermutationGroups = "8bc5a954-2dfc-11e9-10e6-cd969bffa420"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[targets]
test = ["Test", "BenchmarkTools", "AbstractAlgebra"]
test = ["Test", "BenchmarkTools", "AbstractAlgebra", "PermutationGroups"]

View File

@ -1,12 +1,21 @@
using PermutationGroups
using Groups.KnuthBendix
@testset "Wajnryb presentation for Σ₄₁" begin
genus = 4
G = New.SpecialAutomorphismGroup(New.FreeGroup(2genus))
G = SpecialAutomorphismGroup(FreeGroup(2genus))
T = let G = G; (Tas, Tαs, Tes) = New.mcg_twists(genus)
# symplectic pairing goes like this:
# in the free Group:
# f1 ↔ f5
# f2 ↔ f6
# f3 ↔ f7
# f4 ↔ f8
T = let G = G
(Tas, Tαs, Tes) = Groups.mcg_twists(G)
Ta = G.(Tas)
Tα = G.(Tαs)
Tes = G.(Tes)
@ -24,24 +33,58 @@ using PermutationGroups
a8 = T[8]^-1 # Tα
b0 = T[2]^-1 # Ta₂
a0 = (a1*a2*a3)^4*b0^-1 # from the 3-chain relation
X = a4*a5*a3*a4 # auxillary, not present in the Primer
b1 = X^-1*a0*X
a0 = (a1 * a2 * a3)^4 * b0^-1 # from the 3-chain relation
X = a4 * a5 * a3 * a4 # auxillary, not present in the Primer
b1 = X^-1 * a0 * X
b2 = T[10]^-1 # Te₁₃
As = T[[1,5,9,6,12,7,14,8]] # the inverses of the elements a
As = T[[1, 5, 9, 6, 12, 7, 14, 8]] # the inverses of the elements a
@testset "preserving relator" begin
F = Groups.object(G)
R = prod(commutator(gens(F, i), gens(F, i+genus)) for i in 1:genus)
## TODO: how to evaluate automorphisms properly??!!!
for g in T
w = one(word(g))
dg = Groups.domain(g)
gens_idcs = first.(word.(dg))
img = evaluate(g)
A = alphabet(first(dg))
ltrs_map = Vector{eltype(dg)}(undef, length(KnuthBendix.letters(A)))
for i in 1:length(KnuthBendix.letters(A))
if i in gens_idcs
ltrs_map[i] = img[findfirst(==(i), gens_idcs)]
else
ltrs_map[i] = inv(img[findfirst(==(inv(A, i)), gens_idcs)])
end
end
for l in word(R)
append!(w, word(ltrs_map[l]))
end
@test F(w) == R
end
end
@testset "commutation relations" begin
for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for commutativity. Also, a0 is as defined before.
for (j, aj) in enumerate(As)
if abs(i-j) > 1
@test ai*aj == aj*ai
if abs(i - j) > 1
@test ai * aj == aj * ai
elseif i j
@test ai*aj != aj*ai
@test ai * aj != aj * ai
end
end
if i != 4
@test a0*ai == ai*a0
@test a0 * ai == ai * a0
end
end
end
@ -49,145 +92,186 @@ using PermutationGroups
@testset "braid relations" begin
for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for braid relations.
for (j, aj) in enumerate(As)
if abs(i-j) == 1
@test ai*aj*ai == aj*ai*aj
if abs(i - j) == 1
@test ai * aj * ai == aj * ai * aj
end
end
end
@test a0*a4*a0 == a4*a0*a4 # here, a0 and a4 are as before
@test a0 * a4 * a0 == a4 * a0 * a4 # here, a0 and a4 are as before
end
@testset "Lantern relation" begin
@testset "b2 definition" begin
@test b2 == (a2*a3*a1*a2)^-1*b1*(a2*a3*a1*a2)
@test b2 == (a2 * a3 * a1 * a2)^-1 * b1 * (a2 * a3 * a1 * a2)
# some additional tests, checking what explicitly happens to the generators of the π₁ under b2
d = New.domain(b2)
im = New.evaluate(b2)
z = im[7]*d[7]^-1
d = Groups.domain(b2)
im = evaluate(b2)
z = im[7] * d[7]^-1
@test im[1] == d[1]
@test im[2] == z*d[2]*z^-1
@test im[3] == z*d[3]*z^-1
@test im[2] == z * d[2] * z^-1
@test im[3] == z * d[3] * z^-1
@test im[4] == d[4]
@test im[5] == d[5]*z^-1
@test im[6] == z*d[6]*z^-1
@test im[7] == z*d[7]
@test im[5] == d[5] * z^-1
@test im[6] == z * d[6] * z^-1
@test im[7] == z * d[7]
@test im[8] == d[8]
end
@testset "b2: commutation relations" begin
@test b2*a1 == a1*b2
@test b2*a2 != a2*b2
@test b2*a3 == a3*b2
@test b2*a4 == a4*b2
@test b2*a5 == a5*b2
@test b2*a6 != a6*b2
@test b2 * a1 == a1 * b2
@test b2 * a2 != a2 * b2
@test b2 * a3 == a3 * b2
@test b2 * a4 == a4 * b2
@test b2 * a5 == a5 * b2
@test b2 * a6 != a6 * b2
end
@testset "b2: braid relations" begin
@test a2*b2*a2 == b2*a2*b2
@test a6*b2*a6 == b2*a6*b2
@test a2 * b2 * a2 == b2 * a2 * b2
@test a6 * b2 * a6 == b2 * a6 * b2
end
@testset "lantern" begin
u = (a6*a5)^-1*b1*(a6*a5)
x = (a6*a5*a4*a3*a2*u*a1^-1*a2^-1*a3^-1*a4^-1) # yet another auxillary
u = (a6 * a5)^-1 * b1 * (a6 * a5)
x = (a6 * a5 * a4 * a3 * a2 * u * a1^-1 * a2^-1 * a3^-1 * a4^-1) # yet another auxillary
# x = (a4^-1*a3^-1*a2^-1*a1^-1*u*a2*a3*a4*a5*a6)
@time New.evaluate(x)
b3 = x*a0*x^-1
@time New.evaluate(b3)
@test a0*b2*b1 == a1*a3*a5*b3
@time evaluate(x)
b3 = x * a0 * x^-1
@time evaluate(b3)
@test a0 * b2 * b1 == a1 * a3 * a5 * b3
end
end
@testset "Te₁₂ definition" begin
G = parent(first(T))
F₈ = New.object(G)
(a, b, c, d, α, β, γ, δ) = gens(F₈)
F₈ = Groups.object(G)
(a, b, c, d, α, β, γ, δ) = Groups.gens(F₈)
A = KnuthBendix.alphabet(G)
A = alphabet(G)
λ = [i == j ? one(G) : G([A[New.λ(i,j)]]) for i in 1:8, j in 1:8]
ϱ = [i == j ? one(G) : G([A[New.ϱ(i,j)]]) for i in 1:8, j in 1:8]
λ = [i == j ? one(G) : G([A[Groups.λ(i, j)]]) for i in 1:8, j in 1:8]
ϱ = [i == j ? one(G) : G([A[Groups.ϱ(i, j)]]) for i in 1:8, j in 1:8]
g = one(G)
# @show g
# @show g(Groups.domain(G))
# β ↦ α
g *= λ[6,5]
@test New.evaluate(g)[6] == α*β
g *= λ[6, 5]
@test evaluate(g)[6] == α * β
# α ↦ a*α*b^-1
g *= λ[5,1]*inv(ϱ[5,2])
@test New.evaluate(g)[5] == a*α*b^-1
g *= λ[5, 1] * inv(ϱ[5, 2])
@test evaluate(g)[5] == a * α * b^-1
# β ↦ b*α^-1*a^-1*α
g *= inv(λ[6,5])
@test New.evaluate(g)[6] == b*α^-1*a^-1*α*β
g *= inv(λ[6, 5])
@test evaluate(g)[6] == b * α^-1 * a^-1 * α * β
# b ↦ α
g *= λ[2,5]*inv(λ[2,1]);
@test New.evaluate(g)[2] == α
g *= λ[2, 5] * inv(λ[2, 1])
@test evaluate(g)[2] == α
# b ↦ b*α^-1*a^-1*α
g *= inv(λ[2,5]);
@test New.evaluate(g)[2] == b*α^-1*a^-1*α
g *= inv(λ[2, 5])
@test evaluate(g)[2] == b * α^-1 * a^-1 * α
# b ↦ b*α^-1*a^-1*α*b*α^-1
g *= inv(ϱ[2,5])*ϱ[2,1];
@test New.evaluate(g)[2] == b*α^-1*a^-1*α*b*α^-1
g *= inv(ϱ[2, 5]) * ϱ[2, 1]
@test evaluate(g)[2] == b * α^-1 * a^-1 * α * b * α^-1
# b ↦ b*α^-1*a^-1*α*b*α^-1*a*α*b^-1
g *= ϱ[2,5];
@test New.evaluate(g)[2] == b*α^-1*a^-1*α*b*α^-1*a*α*b^-1
g *= ϱ[2, 5]
@test evaluate(g)[2] == b * α^-1 * a^-1 * α * b * α^-1 * a * α * b^-1
x = b*α^-1*a^-1*α
@test New.evaluate(g) == # (a, b, c, d, α, β, γ, δ)
(a, x*b*x^-1, c, d, α*x^-1, x*β, γ, δ)
x = b * α^-1 * a^-1 * α
@test evaluate(g) ==
(a, x * b * x^-1, c, d, α * x^-1, x * β, γ, δ)
# (a, b, c, d, α, β, γ, δ)
@test g == T[9]
end
Base.conj(t::New.Transvection, p::Perm) =
New.Transvection(t.id, t.i^p, t.j^p, t.inv)
Base.conj(t::Groups.Transvection, p::Perm) =
Groups.Transvection(t.id, t.i^p, t.j^p, t.inv)
function Base.conj(elt::New.FPGroupElement, p::Perm)
function Base.conj(elt::FPGroupElement, p::Perm)
G = parent(elt)
A = New.alphabet(elt)
return G([A[conj(A[idx], p)] for idx in New.word(elt)])
A = alphabet(elt)
return G([A[conj(A[idx], p)] for idx in word(elt)])
end
@testset "Te₂₃ definition" begin
Te₁₂, Te₂₃ = T[9], T[12]
G = parent(Te₁₂)
F₈ = New.object(G)
(a, b, c, d, α, β, γ, δ) = gens(F₈)
F₈ = Groups.object(G)
(a, b, c, d, α, β, γ, δ) = Groups.gens(F₈)
img_Te₂₃ = New.evaluate(Te₂₃)
y = c*β^-1*b^-1*β
@test img_Te₂₃ == (a, b, y*c*y^-1, d, α, β*y^-1, y*γ, δ)
img_Te₂₃ = evaluate(Te₂₃)
y = c * β^-1 * b^-1 * β
@test img_Te₂₃ == (a, b, y * c * y^-1, d, α, β * y^-1, y * γ, δ)
σ = perm"(1,2,3)(5,6,7)(8)"
Te₂₃_σ = conj(Te₁₂, σ)
# @test New.word(Te₂₃_σ) == New.word(Te₂₃)
# @test word(Te₂₃_σ) == word(Te₂₃)
@test New.evaluate(Te₂₃_σ) == New.evaluate(Te₂₃)
@test evaluate(Te₂₃_σ) == evaluate(Te₂₃)
@test Te₂₃ == Te₂₃_σ
end
@testset "Te₃₄ definition" begin
Te₁₂, Te₃₄ = T[9], T[14]
G = parent(Te₁₂)
F₈ = New.object(G)
F₈ = Groups.object(G)
(a, b, c, d, α, β, γ, δ) = Groups.gens(F₈)
σ = perm"(1,3)(2,4)(5,7)(6,8)"
Te₃₄_σ = conj(Te₁₂, σ)
@test Te₃₄ == Te₃₄_σ
end
@testset "hyperelliptic τ is central" begin
A = alphabet(G)
λ = Groups.ΡΛ(, A, 2genus)
ϱ = Groups.ΡΛ(:ϱ, A, 2genus)
import Groups: Ta, Tα, Te
halftwists = map(1:genus-1) do i
j = i + 1
x = Ta(λ, j) * inv(A, Ta(λ, i)) * Tα(λ, j) * Te(λ, ϱ, i, j)
δ = x * Tα(λ, i) * inv(A, x)
c =
inv(A, Ta(λ, j)) *
Te(λ, ϱ, i, j) *
Tα(λ, i)^2 *
inv(A, δ) *
inv(A, Ta(λ, j)) *
Ta(λ, i) *
δ
z =
Te(λ, ϱ, j, i) *
inv(A, Ta(λ, i)) *
Tα(λ, i) *
Ta(λ, i) *
inv(A, Te(λ, ϱ, j, i))
G(Ta(λ, i) * inv(A, Ta(λ, j) * Tα(λ, j))^6 * (Ta(λ, j) * Tα(λ, j) * z)^4 * c)
end
τ = (G(Ta(λ, 1) * Tα(λ, 1))^6) * prod(halftwists, init = one(G))
# τ^genus is trivial but only in autπ₁Σ₄
# here we check its centrality
τᵍ = τ^genus
@test_broken all(a * τᵍ == τᵍ * a for a in Groups.gens(G))
end
end

View File

@ -26,6 +26,7 @@ include(joinpath(pathof(GroupsCore), "..", "..", "test", "conformance_test.jl"))
include("fp_groups.jl")
include("AutFn.jl")
include("AutSigma_41.jl")
# if !haskey(ENV, "CI")
# include("benchmarks.jl")