mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2024-11-19 14:35:28 +01:00
278 lines
8.0 KiB
Julia
278 lines
8.0 KiB
Julia
using PermutationGroups
|
||
using Groups.KnuthBendix
|
||
|
||
@testset "Wajnryb presentation for Σ₄₁" begin
|
||
|
||
genus = 4
|
||
|
||
G = SpecialAutomorphismGroup(FreeGroup(2genus))
|
||
|
||
# symplectic pairing goes like this:
|
||
# in the free Group:
|
||
# f1 ↔ f5
|
||
# f2 ↔ f6
|
||
# f3 ↔ f7
|
||
# f4 ↔ f8
|
||
|
||
T = let G = G
|
||
(Tas, Tαs, Tes) = Groups.mcg_twists(G)
|
||
Ta = G.(Tas)
|
||
Tα = G.(Tαs)
|
||
Tes = G.(Tes)
|
||
|
||
[Ta; Tα; Tes]
|
||
end
|
||
|
||
a1 = T[1]^-1 # Ta₁
|
||
a2 = T[5]^-1 # Tα₁
|
||
a3 = T[9]^-1 # Te₁₂
|
||
a4 = T[6]^-1 # Tα₂
|
||
a5 = T[12]^-1 # Te₂₃
|
||
a6 = T[7]^-1 # Tα₃
|
||
a7 = T[14]^-1 # Te₃₄
|
||
a8 = T[8]^-1 # Tα₄
|
||
|
||
b0 = T[2]^-1 # Ta₂
|
||
a0 = (a1 * a2 * a3)^4 * b0^-1 # from the 3-chain relation
|
||
X = a4 * a5 * a3 * a4 # auxillary, not present in the Primer
|
||
b1 = X^-1 * a0 * X
|
||
b2 = T[10]^-1 # Te₁₃
|
||
|
||
As = T[[1, 5, 9, 6, 12, 7, 14, 8]] # the inverses of the elements a
|
||
|
||
|
||
@testset "preserving relator" begin
|
||
F = Groups.object(G)
|
||
|
||
R = prod(commutator(gens(F, i), gens(F, i+genus)) for i in 1:genus)
|
||
|
||
## TODO: how to evaluate automorphisms properly??!!!
|
||
|
||
for g in T
|
||
w = one(word(g))
|
||
|
||
dg = Groups.domain(g)
|
||
gens_idcs = first.(word.(dg))
|
||
img = evaluate(g)
|
||
A = alphabet(first(dg))
|
||
|
||
ltrs_map = Vector{eltype(dg)}(undef, length(KnuthBendix.letters(A)))
|
||
|
||
for i in 1:length(KnuthBendix.letters(A))
|
||
if i in gens_idcs
|
||
ltrs_map[i] = img[findfirst(==(i), gens_idcs)]
|
||
else
|
||
ltrs_map[i] = inv(img[findfirst(==(inv(A, i)), gens_idcs)])
|
||
end
|
||
end
|
||
|
||
for l in word(R)
|
||
append!(w, word(ltrs_map[l]))
|
||
end
|
||
|
||
@test F(w) == R
|
||
end
|
||
end
|
||
|
||
@testset "commutation relations" begin
|
||
for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for commutativity. Also, a0 is as defined before.
|
||
for (j, aj) in enumerate(As)
|
||
if abs(i - j) > 1
|
||
@test ai * aj == aj * ai
|
||
elseif i ≠ j
|
||
@test ai * aj != aj * ai
|
||
end
|
||
end
|
||
if i != 4
|
||
@test a0 * ai == ai * a0
|
||
end
|
||
end
|
||
end
|
||
|
||
@testset "braid relations" begin
|
||
for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for braid relations.
|
||
for (j, aj) in enumerate(As)
|
||
if abs(i - j) == 1
|
||
@test ai * aj * ai == aj * ai * aj
|
||
end
|
||
end
|
||
end
|
||
@test a0 * a4 * a0 == a4 * a0 * a4 # here, a0 and a4 are as before
|
||
end
|
||
|
||
@testset "Lantern relation" begin
|
||
|
||
@testset "b2 definition" begin
|
||
@test b2 == (a2 * a3 * a1 * a2)^-1 * b1 * (a2 * a3 * a1 * a2)
|
||
|
||
# some additional tests, checking what explicitly happens to the generators of the π₁ under b2
|
||
d = Groups.domain(b2)
|
||
im = evaluate(b2)
|
||
z = im[7] * d[7]^-1
|
||
|
||
@test im[1] == d[1]
|
||
@test im[2] == z * d[2] * z^-1
|
||
@test im[3] == z * d[3] * z^-1
|
||
@test im[4] == d[4]
|
||
|
||
@test im[5] == d[5] * z^-1
|
||
@test im[6] == z * d[6] * z^-1
|
||
@test im[7] == z * d[7]
|
||
@test im[8] == d[8]
|
||
|
||
end
|
||
|
||
@testset "b2: commutation relations" begin
|
||
@test b2 * a1 == a1 * b2
|
||
@test b2 * a2 != a2 * b2
|
||
@test b2 * a3 == a3 * b2
|
||
@test b2 * a4 == a4 * b2
|
||
@test b2 * a5 == a5 * b2
|
||
@test b2 * a6 != a6 * b2
|
||
end
|
||
|
||
@testset "b2: braid relations" begin
|
||
@test a2 * b2 * a2 == b2 * a2 * b2
|
||
@test a6 * b2 * a6 == b2 * a6 * b2
|
||
end
|
||
|
||
@testset "lantern" begin
|
||
u = (a6 * a5)^-1 * b1 * (a6 * a5)
|
||
x = (a6 * a5 * a4 * a3 * a2 * u * a1^-1 * a2^-1 * a3^-1 * a4^-1) # yet another auxillary
|
||
# x = (a4^-1*a3^-1*a2^-1*a1^-1*u*a2*a3*a4*a5*a6)
|
||
@time evaluate(x)
|
||
b3 = x * a0 * x^-1
|
||
@time evaluate(b3)
|
||
@test a0 * b2 * b1 == a1 * a3 * a5 * b3
|
||
end
|
||
end
|
||
|
||
|
||
@testset "Te₁₂ definition" begin
|
||
G = parent(first(T))
|
||
F₈ = Groups.object(G)
|
||
(a, b, c, d, α, β, γ, δ) = Groups.gens(F₈)
|
||
|
||
A = alphabet(G)
|
||
|
||
λ = [i == j ? one(G) : G([A[Groups.λ(i, j)]]) for i in 1:8, j in 1:8]
|
||
ϱ = [i == j ? one(G) : G([A[Groups.ϱ(i, j)]]) for i in 1:8, j in 1:8]
|
||
|
||
g = one(G)
|
||
|
||
# β ↦ α*β
|
||
g *= λ[6, 5]
|
||
@test evaluate(g)[6] == α * β
|
||
|
||
# α ↦ a*α*b^-1
|
||
g *= λ[5, 1] * inv(ϱ[5, 2])
|
||
@test evaluate(g)[5] == a * α * b^-1
|
||
|
||
# β ↦ b*α^-1*a^-1*α*β
|
||
g *= inv(λ[6, 5])
|
||
@test evaluate(g)[6] == b * α^-1 * a^-1 * α * β
|
||
|
||
# b ↦ α
|
||
g *= λ[2, 5] * inv(λ[2, 1])
|
||
@test evaluate(g)[2] == α
|
||
|
||
# b ↦ b*α^-1*a^-1*α
|
||
g *= inv(λ[2, 5])
|
||
@test evaluate(g)[2] == b * α^-1 * a^-1 * α
|
||
|
||
# b ↦ b*α^-1*a^-1*α*b*α^-1
|
||
g *= inv(ϱ[2, 5]) * ϱ[2, 1]
|
||
@test evaluate(g)[2] == b * α^-1 * a^-1 * α * b * α^-1
|
||
|
||
# b ↦ b*α^-1*a^-1*α*b*α^-1*a*α*b^-1
|
||
g *= ϱ[2, 5]
|
||
@test evaluate(g)[2] == b * α^-1 * a^-1 * α * b * α^-1 * a * α * b^-1
|
||
|
||
x = b * α^-1 * a^-1 * α
|
||
@test evaluate(g) ==
|
||
(a, x * b * x^-1, c, d, α * x^-1, x * β, γ, δ)
|
||
# (a, b, c, d, α, β, γ, δ)
|
||
@test g == T[9]
|
||
end
|
||
|
||
Base.conj(t::Groups.Transvection, p::Perm) =
|
||
Groups.Transvection(t.id, t.i^p, t.j^p, t.inv)
|
||
|
||
function Base.conj(elt::FPGroupElement, p::Perm)
|
||
G = parent(elt)
|
||
A = alphabet(elt)
|
||
return G([A[conj(A[idx], p)] for idx in word(elt)])
|
||
end
|
||
|
||
@testset "Te₂₃ definition" begin
|
||
Te₁₂, Te₂₃ = T[9], T[12]
|
||
G = parent(Te₁₂)
|
||
F₈ = Groups.object(G)
|
||
(a, b, c, d, α, β, γ, δ) = Groups.gens(F₈)
|
||
|
||
img_Te₂₃ = evaluate(Te₂₃)
|
||
y = c * β^-1 * b^-1 * β
|
||
@test img_Te₂₃ == (a, b, y * c * y^-1, d, α, β * y^-1, y * γ, δ)
|
||
|
||
σ = perm"(1,2,3)(5,6,7)(8)"
|
||
Te₂₃_σ = conj(Te₁₂, σ)
|
||
# @test word(Te₂₃_σ) == word(Te₂₃)
|
||
|
||
@test evaluate(Te₂₃_σ) == evaluate(Te₂₃)
|
||
@test Te₂₃ == Te₂₃_σ
|
||
end
|
||
|
||
@testset "Te₃₄ definition" begin
|
||
Te₁₂, Te₃₄ = T[9], T[14]
|
||
G = parent(Te₁₂)
|
||
F₈ = Groups.object(G)
|
||
(a, b, c, d, α, β, γ, δ) = Groups.gens(F₈)
|
||
|
||
σ = perm"(1,3)(2,4)(5,7)(6,8)"
|
||
Te₃₄_σ = conj(Te₁₂, σ)
|
||
@test Te₃₄ == Te₃₄_σ
|
||
end
|
||
|
||
@testset "hyperelliptic τ is central" begin
|
||
|
||
A = alphabet(G)
|
||
λ = Groups.ΡΛ(:λ, A, 2genus)
|
||
ϱ = Groups.ΡΛ(:ϱ, A, 2genus)
|
||
|
||
import Groups: Ta, Tα, Te
|
||
|
||
halftwists = map(1:genus-1) do i
|
||
j = i + 1
|
||
x = Ta(λ, j) * inv(A, Ta(λ, i)) * Tα(λ, j) * Te(λ, ϱ, i, j)
|
||
δ = x * Tα(λ, i) * inv(A, x)
|
||
c =
|
||
inv(A, Ta(λ, j)) *
|
||
Te(λ, ϱ, i, j) *
|
||
Tα(λ, i)^2 *
|
||
inv(A, δ) *
|
||
inv(A, Ta(λ, j)) *
|
||
Ta(λ, i) *
|
||
δ
|
||
z =
|
||
Te(λ, ϱ, j, i) *
|
||
inv(A, Ta(λ, i)) *
|
||
Tα(λ, i) *
|
||
Ta(λ, i) *
|
||
inv(A, Te(λ, ϱ, j, i))
|
||
|
||
G(Ta(λ, i) * inv(A, Ta(λ, j) * Tα(λ, j))^6 * (Ta(λ, j) * Tα(λ, j) * z)^4 * c)
|
||
end
|
||
|
||
τ = (G(Ta(λ, 1) * Tα(λ, 1))^6) * prod(halftwists, init = one(G))
|
||
|
||
# τ^genus is trivial but only in autπ₁Σ₄
|
||
# here we check its centrality
|
||
|
||
|
||
|
||
|
||
τᵍ = τ^genus
|
||
@test_broken all(a * τᵍ == τᵍ * a for a in Groups.gens(G))
|
||
end
|
||
end
|