1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-11-19 06:30:29 +01:00

test show methods

This commit is contained in:
Marek Kaluba 2021-06-21 17:53:29 +02:00
parent 8cb64d947d
commit 39f4ef4b5f
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
4 changed files with 22 additions and 7 deletions

View File

@ -31,12 +31,11 @@ end
function Base.show(io::IO, t::Transvection)
id = if t.id === :ϱ
"ϱ"
'ϱ'
else # if t.id === :λ
"λ"
'λ'
end
# print(io, id, Groups.subscriptify(t.i), ".", Groups.subscriptify(t.j))
print(io, id, "_", t.i, ",", t.j)
print(io, id, subscriptify(t.i), '.', subscriptify(t.j))
t.inv && print(io, "^-1")
end

View File

@ -211,3 +211,8 @@ end
abstract type GSymbol end
Base.literal_pow(::typeof(^), t::GSymbol, ::Val{-1}) = inv(t)
function subscriptify(n::Integer)
subscript_0 = Int(0x2080) # Char(0x2080) -> subscript 0
return join([Char(subscript_0 + i) for i in reverse(digits(n))], "")
end

View File

@ -23,6 +23,9 @@
@test New.gersten_alphabet(3) isa Alphabet
A = New.gersten_alphabet(3)
@test length(A) == 12
@test sprint(show, New.ϱ(1, 2)) == "ϱ₁.₂"
@test sprint(show, New.λ(3, 2)) == "λ₃.₂"
end
A4 = Alphabet(
@ -36,8 +39,6 @@
)
F4 = New.FreeGroup([:a, :b, :c, :d], A4)
A = New.SpecialAutomorphismGroup(F4, maxrules=1000)
a,b,c,d = gens(F4)
D = ntuple(i->gens(F4, i), 4)
@ -78,12 +79,14 @@
@test inv(l)(deepcopy(D)) == (a, d^-1*b,c, d)
end
A = New.SpecialAutomorphismGroup(F4, maxrules=1000)
@testset "AutomorphismGroup constructors" begin
@test A isa New.AbstractFPGroup
@test A isa New.AutomorphismGroup
@test KnuthBendix.alphabet(A) isa Alphabet
@test New.relations(A) isa Vector{<:Pair}
@test sprint(show, A) == "automorphism group of free group on 4 generators"
end
@testset "Automorphisms: hash and evaluate" begin
@ -93,6 +96,8 @@
@test New.evaluate(g*h) == New.evaluate(h*g)
@test (g*h).savedhash == zero(UInt)
@test sprint(show, typeof(g)) == "Automorphism{Groups.New.FreeGroup{Symbol},…}"
a = g*h
b = h*g
@test hash(a) != zero(UInt)

View File

@ -14,6 +14,7 @@
G = New.FPGroup(F, [a*b=>b*a, a*c=>c*a, b*c=>c*b])
@test G isa New.FPGroup
@test sprint(show, G) == "⟨a, b, c | a*b => b*a, a*c => c*a, b*c => c*b⟩"
@test rand(G) isa New.FPGroupElement
f = a*c*b
@ -33,6 +34,11 @@
New.normalform!(g)
@test New.word(g) == [1, 3, 5]
let g = aG*cG*bG
# test that we normalize g before printing
@test sprint(show, g) == "a*b*c"
end
# quotient of G
H = New.FPGroup(G, [aG^2=>cG, bG*cG=>aG], maxrules=200)