mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2024-11-04 02:50:28 +01:00
72 lines
1.8 KiB
Julia
72 lines
1.8 KiB
Julia
function test_homomorphism(hom)
|
||
F = hom.source
|
||
@test isone(hom(one(F)))
|
||
@test all(inv(hom(g)) == hom(inv(g)) for g in gens(F))
|
||
@test all(isone(hom(g) * hom(inv(g))) for g in gens(F))
|
||
@test all(hom(g * h) == hom(g) * hom(h) for g in gens(F) for h in gens(F))
|
||
@test all(
|
||
hom(inv(g * h)) == inv(hom(g * h)) == hom(inv(h)) * hom(inv(g)) for
|
||
g in gens(F) for h in gens(F)
|
||
)
|
||
end
|
||
|
||
@testset "Homomorphisms" begin
|
||
|
||
F₂ = FreeGroup(2)
|
||
g,h = gens(F₂)
|
||
|
||
ℤ² = FPGroup(F₂, [g*h => h*g])
|
||
|
||
let hom = Groups.Homomorphism((i, G, H) -> Groups.word_type(H)([i]), F₂, ℤ²)
|
||
|
||
@test hom(word(g)) == word(g)
|
||
|
||
@test hom(word(g*h*inv(g))) == [1,3,2]
|
||
|
||
@test hom(g*h*inv(g)) == hom(h)
|
||
@test isone(hom(g*h*inv(g)*inv(h)))
|
||
|
||
@test contains(sprint(print, hom), "Homomorphism")
|
||
|
||
test_homomorphism(hom)
|
||
end
|
||
|
||
SAutF3 = SpecialAutomorphismGroup(FreeGroup(3))
|
||
SL3Z = MatrixGroups.SpecialLinearGroup{3}(Int8)
|
||
|
||
let hom = Groups.Homomorphism(
|
||
Groups._abelianize,
|
||
SAutF3,
|
||
SL3Z,
|
||
)
|
||
|
||
A = alphabet(SAutF3)
|
||
g = SAutF3([A[Groups.ϱ(1,2)]])
|
||
h = SAutF3([A[Groups.λ(1,2)]])^-1
|
||
|
||
@test !isone(g) && !isone(hom(g))
|
||
@test !isone(h) && !isone(hom(h))
|
||
@test !isone(g*h) && isone(hom(g*h))
|
||
|
||
test_homomorphism(hom)
|
||
end
|
||
|
||
@testset "Correctness of autπ₁Σ → SpN" begin
|
||
|
||
GENUS = 3
|
||
π₁Σ = Groups.SurfaceGroup(GENUS, 0)
|
||
autπ₁Σ = AutomorphismGroup(π₁Σ)
|
||
|
||
SpN = MatrixGroups.SymplecticGroup{2GENUS}(Int8)
|
||
|
||
hom = Groups.Homomorphism(
|
||
Groups._abelianize,
|
||
autπ₁Σ,
|
||
SpN,
|
||
check = false,
|
||
)
|
||
|
||
test_homomorphism(hom)
|
||
end
|
||
end
|