1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-12-05 02:11:27 +01:00
Groups.jl/test/AutGroup-tests.jl

254 lines
8.5 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

@testset "Automorphisms" begin
G = PermutationGroup(Int8(4))
@testset "AutSymbol" begin
@test_throws MethodError Groups.AutSymbol("a")
@test_throws MethodError Groups.AutSymbol("a", 1)
f = Groups.AutSymbol("a", 1, Groups.FlipAut(2))
@test isa(f, Groups.GSymbol)
@test isa(f, Groups.AutSymbol)
@test isa(Groups.perm_autsymbol(Int8.([1,2,3,4])), Groups.AutSymbol)
@test isa(Groups.rmul_autsymbol(1,2), Groups.AutSymbol)
@test isa(Groups.lmul_autsymbol(3,4), Groups.AutSymbol)
@test isa(Groups.flip_autsymbol(3), Groups.AutSymbol)
end
a,b,c,d = gens(FreeGroup(4))
D = NTuple{4,FreeGroupElem}([a,b,c,d])
@testset "flip_autsymbol correctness" begin
@test Groups.flip_autsymbol(1)(deepcopy(D)) == (a^-1, b,c,d)
@test Groups.flip_autsymbol(2)(deepcopy(D)) == (a, b^-1,c,d)
@test Groups.flip_autsymbol(3)(deepcopy(D)) == (a, b,c^-1,d)
@test Groups.flip_autsymbol(4)(deepcopy(D)) == (a, b,c,d^-1)
@test inv(Groups.flip_autsymbol(1))(deepcopy(D)) == (a^-1, b,c,d)
@test inv(Groups.flip_autsymbol(2))(deepcopy(D)) == (a, b^-1,c,d)
@test inv(Groups.flip_autsymbol(3))(deepcopy(D)) == (a, b,c^-1,d)
@test inv(Groups.flip_autsymbol(4))(deepcopy(D)) == (a, b,c,d^-1)
end
@testset "perm_autsymbol correctness" begin
σ = Groups.perm_autsymbol([1,2,3,4])
@test σ(deepcopy(D)) == deepcopy(D)
@test inv(σ)(deepcopy(D)) == deepcopy(D)
σ = Groups.perm_autsymbol([2,3,4,1])
@test σ(deepcopy(D)) == (b, c, d, a)
@test inv(σ)(deepcopy(D)) == (d, a, b, c)
σ = Groups.perm_autsymbol([2,1,4,3])
@test σ(deepcopy(D)) == (b, a, d, c)
@test inv(σ)(deepcopy(D)) == (b, a, d, c)
σ = Groups.perm_autsymbol([2,3,1,4])
@test σ(deepcopy(D)) == (b, c, a, d)
@test inv(σ)(deepcopy(D)) == (c, a, b, d)
end
@testset "rmul/lmul_autsymbol correctness" begin
i,j = 1,2
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(deepcopy(D)) == (a*b, b, c, d)
@test inv(r)(deepcopy(D)) == (a*b^-1,b, c, d)
@test l(deepcopy(D)) == (b*a, b, c, d)
@test inv(l)(deepcopy(D)) == (b^-1*a,b, c, d)
i,j = 3,1
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(deepcopy(D)) == (a, b, c*a, d)
@test inv(r)(deepcopy(D)) == (a, b, c*a^-1,d)
@test l(deepcopy(D)) == (a, b, a*c, d)
@test inv(l)(deepcopy(D)) == (a, b, a^-1*c,d)
i,j = 4,3
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(deepcopy(D)) == (a, b, c, d*c)
@test inv(r)(deepcopy(D)) == (a, b, c, d*c^-1)
@test l(deepcopy(D)) == (a, b, c, c*d)
@test inv(l)(deepcopy(D)) == (a, b, c, c^-1*d)
i,j = 2,4
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(deepcopy(D)) == (a, b*d, c, d)
@test inv(r)(deepcopy(D)) == (a, b*d^-1,c, d)
@test l(deepcopy(D)) == (a, d*b, c, d)
@test inv(l)(deepcopy(D)) == (a, d^-1*b,c, d)
end
@testset "AutGroup/Automorphism constructors" begin
f = Groups.AutSymbol("a", 1, Groups.FlipAut(1))
@test isa(Automorphism{3}(f), Groups.GWord)
@test isa(Automorphism{3}(f), Automorphism)
@test isa(AutGroup(FreeGroup(3)), Group)
@test isa(AutGroup(FreeGroup(1)), Groups.AbstractFPGroup)
A = AutGroup(FreeGroup(1))
@test isa(gens(A), Vector{Automorphism{1}})
@test length(gens(A)) == 1
A = AutGroup(FreeGroup(1), special=true)
@test length(gens(A)) == 0
A = AutGroup(FreeGroup(2))
@test length(gens(A)) == 7
gens = gens(A)
@test isa(A(Groups.rmul_autsymbol(1,2)), Automorphism)
@test A(Groups.rmul_autsymbol(1,2)) in gens
@test isa(A(Groups.rmul_autsymbol(2,1)), Automorphism)
@test A(Groups.rmul_autsymbol(2,1)) in gens
@test isa(A(Groups.lmul_autsymbol(1,2)), Automorphism)
@test A(Groups.lmul_autsymbol(1,2)) in gens
@test isa(A(Groups.lmul_autsymbol(2,1)), Automorphism)
@test A(Groups.lmul_autsymbol(2,1)) in gens
@test isa(A(Groups.flip_autsymbol(1)), Automorphism)
@test A(Groups.flip_autsymbol(1)) in gens
@test isa(A(Groups.flip_autsymbol(2)), Automorphism)
@test A(Groups.flip_autsymbol(2)) in gens
@test isa(A(Groups.perm_autsymbol([2,1])), Automorphism)
@test A(Groups.perm_autsymbol([2,1])) in gens
end
A = AutGroup(FreeGroup(4))
@testset "eltary functions" begin
f = Groups.perm_autsymbol([2,3,4,1])
@test (Groups.change_pow(f, 2)).pow == 1
@test (Groups.change_pow(f, -2)).pow == 1
@test (inv(f)).pow == 1
f = Groups.perm_autsymbol([2,1,4,3])
@test isa(inv(f), Groups.AutSymbol)
@test_throws DomainError f^-1
@test_throws MethodError f*f
@test A(f)^-1 == A(inv(f))
end
@testset "reductions/arithmetic" begin
f = Groups.perm_autsymbol([2,3,4,1])
= Groups.r_multiply(A(f), [f], reduced=false)
@test Groups.simplifyperms!() == false
@test ^2 == A()
a = A(Groups.rmul_autsymbol(1,2))*Groups.flip_autsymbol(2)
b = Groups.flip_autsymbol(2)*A(inv(Groups.rmul_autsymbol(1,2)))
@test a*b == b*a
@test a^3 * b^3 == A()
g,h = gens(A)[[1,8]] # (g, h) = (ϱ₁₂, ϱ₃₂)
@test Groups.domain(A) == NTuple{4, FreeGroupElem}(gens(A.objectGroup))
@test (g*h)(Groups.domain(A)) == (h*g)(Groups.domain(A))
@test (g*h).savedhash != (h*g).savedhash
a = g*h
b = h*g
@test hash(a) == hash(b)
@test a.savedhash == b.savedhash
@test length(unique([a,b])) == 1
@test length(unique([g*h, h*g])) == 1
# Not so simple arithmetic: applying starting on the left:
# ϱ₁₂*ϱ₂₁⁻¹*λ₁₂*ε₂ == σ₂₁₃₄
g = A(Groups.rmul_autsymbol(1,2))
x1, x2, x3, x4 = Groups.domain(A)
@test g(Groups.domain(A)) == (x1*x2, x2, x3, x4)
g = g*inv(A(Groups.rmul_autsymbol(2,1)))
@test g(Groups.domain(A)) == (x1*x2, x1^-1, x3, x4)
g = g*A(Groups.lmul_autsymbol(1,2))
@test g(Groups.domain(A)) == (x2, x1^-1, x3, x4)
g = g*A(Groups.flip_autsymbol(2))
@test g(Groups.domain(A)) == (x2, x1, x3, x4)
@test g(Groups.domain(A)) == A(Groups.perm_autsymbol([2,1,3,4]))(Groups.domain(A))
@test g == A(Groups.perm_autsymbol([2,1,3,4]))
g_im = g(Groups.domain(A))
@test length(g_im[1]) == 5
@test length(g_im[2]) == 3
@test length(g_im[3]) == 1
@test length(g_im[4]) == 1
@test length.(Groups.reduce!.(g_im)) == (1,1,1,1)
end
@testset "specific Aut(F4) tests" begin
N = 4
G = AutGroup(FreeGroup(N))
S = G.gens
@test isa(S, Vector{Groups.AutSymbol})
S = [G(s) for s in unique(S)]
@test isa(S, Vector{Automorphism{N}})
@test S == gens(G)
@test length(S) == 51
S_inv = [S..., [inv(s) for s in S]...]
@test length(unique(S_inv)) == 75
G = AutGroup(FreeGroup(N), special=true)
S = gens(G)
S_inv = [G(), S..., [inv(s) for s in S]...]
S_inv = unique(S_inv)
B_2 = [i*j for (i,j) in Base.product(S_inv, S_inv)]
@test length(B_2) == 2401
@test length(unique(B_2)) == 1777
end
@testset "linear_repr tests" begin
N = 3
G = AutGroup(FreeGroup(N))
S = unique([gens(G); inv.(gens(G))])
R = 3
@test Groups.linear_repr(G()) isa Matrix{Float64}
@test Groups.linear_repr(G()) == eye(N)
M = eye(N)
M[1,2] = 1
ϱ₁₂ = G(Groups.rmul_autsymbol(1,2))
λ₁₂ = G(Groups.rmul_autsymbol(1,2))
@test Groups.linear_repr(ϱ₁₂) == M
@test Groups.linear_repr(λ₁₂) == M
M[1,2] = -1
@test Groups.linear_repr(ϱ₁₂^-1) == M
@test Groups.linear_repr(λ₁₂^-1) == M
M = eye(N)
M[2,2] = -1
ε₂ = G(Groups.flip_autsymbol(2))
@test Groups.linear_repr(ε₂) == M
@test Groups.linear_repr(ε₂^2) == eye(N)
M = [0.0 0.0 1.0; 1.0 0.0 0.0; 0.0 1.0 0.0]
σ = G(Groups.perm_autsymbol([2,3,1]))
@test Groups.linear_repr(σ) == M
@test Groups.linear_repr(σ^3) == eye(3)
@test Groups.linear_repr(σ)^3 eye(3)
function test_homomorphism(S, r)
for elts in Iterators.product([[g for g in S] for _ in 1:r]...)
prod(Groups.linear_repr.(elts)) == Groups.linear_repr(prod(elts)) || error("linear representaton test failed at $elts")
end
return 0
end
@test test_homomorphism(S, R) == 0
end
end