1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-09 05:32:32 +01:00
Groups.jl/src/types.jl
2022-10-14 01:14:38 +02:00

268 lines
7.8 KiB
Julia

## "Abstract" definitions
"""
AbstractFPGroup
An Abstract type representing finitely presented groups. Every instance must implement
* `KnuthBendix.alphabet(G::MyFPGroup)`
* `rewriting(G::MyFPGroup)` : return the rewriting object which must implement
> `KnuthBendix.rewrite!(u, v, rewriting(G))`.
E.g. for `G::FreeGroup` `alphabet(G)` is returned, which amounts to free rewriting.
* `ordering(G::MyFPGroup)[ = KnuthBendix.ordering(rewriting(G))]` : return the
(implicit) ordering for the alphabet of `G`.
* `relations(G::MyFPGroup)` : return a set of defining relations.
AbstractFPGroup may also override `word_type(::Type{MyFPGroup}) = Word{UInt8}`,
which controls the word type used for group elements.
If a group has more than `255` generators you need to define e.g.
> `word_type(::Type{MyFPGroup}) = Word{UInt16}`
"""
abstract type AbstractFPGroup <: GroupsCore.Group end
word_type(G::AbstractFPGroup) = word_type(typeof(G))
# the default:
word_type(::Type{<:AbstractFPGroup}) = Word{UInt8}
"""
rewriting(G::AbstractFPGroup)
Return a "rewriting object" for elements of `G`.
The rewriting object must must implement
KnuthBendix.rewrite!(u::AbstractWord, v::AbstractWord, rewriting(G))
For example if `G` is a `FreeGroup` then `alphabet(G)` is returned which results
in free rewriting. For `FPGroup` a rewriting system is returned which may
(or may not) rewrite word `v` to its normal form (depending on e.g. its confluence).
"""
function rewriting end
KnuthBendix.ordering(G::AbstractFPGroup) = ordering(rewriting(G))
KnuthBendix.alphabet(G::AbstractFPGroup) = alphabet(ordering(G))
Base.@propagate_inbounds function (G::AbstractFPGroup)(
word::AbstractVector{<:Integer},
)
@boundscheck @assert all(
l -> 1 <= l <= length(alphabet(G)),
word,
)
return FPGroupElement(word_type(G)(word), G)
end
## Group Interface
Base.one(G::AbstractFPGroup) = FPGroupElement(one(word_type(G)), G)
Base.eltype(::Type{FPG}) where {FPG<:AbstractFPGroup} =
FPGroupElement{FPG,word_type(FPG)}
include("iteration.jl")
GroupsCore.ngens(G::AbstractFPGroup) = length(G.gens)
function GroupsCore.gens(G::AbstractFPGroup, i::Integer)
@boundscheck 1 <= i <= GroupsCore.ngens(G)
l = alphabet(G)[G.gens[i]]
return FPGroupElement(word_type(G)([l]), G)
end
GroupsCore.gens(G::AbstractFPGroup) =
[gens(G, i) for i in 1:GroupsCore.ngens(G)]
# TODO: ProductReplacementAlgorithm
function Base.rand(
rng::Random.AbstractRNG,
rs::Random.SamplerTrivial{<:AbstractFPGroup},
)
l = rand(10:100)
G = rs[]
nletters = length(alphabet(G))
return FPGroupElement(word_type(G)(rand(1:nletters, l)), G)
end
Base.isfinite(::AbstractFPGroup) = (
@warn "using generic isfinite(::AbstractFPGroup): the returned `false` might be wrong"; false
)
## FPGroupElement
abstract type AbstractFPGroupElement{Gr} <: GroupElement end
mutable struct FPGroupElement{Gr<:AbstractFPGroup,W<:AbstractWord} <:
AbstractFPGroupElement{Gr}
word::W
savedhash::UInt
parent::Gr
FPGroupElement(
word::W,
G::AbstractFPGroup,
hash::UInt=UInt(0),
) where {W<:AbstractWord} = new{typeof(G),W}(word, hash, G)
FPGroupElement{Gr,W}(word::AbstractWord, G::Gr) where {Gr,W} =
new{Gr,W}(word, UInt(0), G)
end
Base.show(io::IO, ::Type{<:FPGroupElement{Gr}}) where {Gr} =
print(io, FPGroupElement, "{$Gr, …}")
word(f::AbstractFPGroupElement) = f.word
#convenience
KnuthBendix.alphabet(g::AbstractFPGroupElement) = alphabet(parent(g))
function Base.show(io::IO, f::AbstractFPGroupElement)
f = normalform!(f)
return KnuthBendix.print_repr(io, word(f), alphabet(f))
end
## GroupElement Interface for FPGroupElement
Base.parent(f::AbstractFPGroupElement) = f.parent
function Base.:(==)(g::AbstractFPGroupElement, h::AbstractFPGroupElement)
@boundscheck @assert parent(g) === parent(h)
normalform!(g)
normalform!(h)
hash(g) != hash(h) && return false
return equality_data(g) == equality_data(h)
end
function Base.deepcopy_internal(g::FPGroupElement, stackdict::IdDict)
return FPGroupElement(copy(word(g)), parent(g), g.savedhash)
end
function Base.inv(g::GEl) where {GEl<:AbstractFPGroupElement}
G = parent(g)
return GEl(inv(word(g), alphabet(G)), G)
end
function Base.:(*)(g::GEl, h::GEl) where {GEl<:AbstractFPGroupElement}
@boundscheck @assert parent(g) === parent(h)
return GEl(word(g) * word(h), parent(g))
end
GroupsCore.isfiniteorder(g::AbstractFPGroupElement) =
isone(g) ? true :
(
@warn "using generic isfiniteorder(::AbstractFPGroupElement): the returned `false` might be wrong"; false
)
# additional methods:
Base.isone(g::AbstractFPGroupElement) = (normalform!(g); isempty(word(g)))
## Free Groups
struct FreeGroup{T,O} <: AbstractFPGroup
gens::Vector{T}
ordering::O
function FreeGroup(gens, ordering::KnuthBendix.WordOrdering)
@assert length(gens) == length(unique(gens))
@assert all(l -> l in alphabet(ordering), gens)
return new{eltype(gens),typeof(ordering)}(gens, ordering)
end
end
FreeGroup(gens, A::Alphabet) = FreeGroup(gens, KnuthBendix.LenLex(A))
function FreeGroup(A::Alphabet)
@boundscheck @assert all(
KnuthBendix.hasinverse(l, A) for l in A
)
gens = Vector{eltype(A)}()
invs = Vector{eltype(A)}()
for l in A
l invs && continue
push!(gens, l)
push!(invs, inv(l, A))
end
return FreeGroup(gens, A)
end
function FreeGroup(n::Integer)
symbols = Symbol[]
inverses = Int[]
sizehint!(symbols, 2n)
sizehint!(inverses, 2n)
for i in 1:n
push!(symbols, Symbol(:f, i), Symbol(:F, i))
push!(inverses, 2i, 2i - 1)
end
return FreeGroup(symbols[1:2:2n], Alphabet(symbols, inverses))
end
Base.show(io::IO, F::FreeGroup) =
print(io, "free group on $(ngens(F)) generators")
# mandatory methods:
KnuthBendix.ordering(F::FreeGroup) = F.ordering
rewriting(F::FreeGroup) = alphabet(F) # alphabet(F) = alphabet(ordering(F))
relations(F::FreeGroup) = Pair{eltype(F),eltype(F)}[]
# GroupsCore interface:
# these are mathematically correct
Base.isfinite(::FreeGroup) = false
GroupsCore.isfiniteorder(g::AbstractFPGroupElement{<:FreeGroup}) =
isone(g) ? true : false
## FP Groups
struct FPGroup{T,RW,S} <: AbstractFPGroup
gens::Vector{T}
relations::Vector{Pair{S,S}}
rw::RW
end
relations(G::FPGroup) = G.relations
rewriting(G::FPGroup) = G.rw
function FPGroup(
G::AbstractFPGroup,
rels::AbstractVector{<:Pair{GEl,GEl}};
ordering=KnuthBendix.ordering(G),
kwargs...
) where {GEl<:FPGroupElement}
for (lhs, rhs) in rels
@assert parent(lhs) === parent(rhs) === G
end
word_rels = [word(lhs) => word(rhs) for (lhs, rhs) in [relations(G); rels]]
rws = KnuthBendix.RewritingSystem(word_rels, ordering)
rws = KnuthBendix.knuthbendix(rws, KnuthBendix.Settings(; kwargs...))
return FPGroup(G.gens, rels, KnuthBendix.IndexAutomaton(rws))
end
function Base.show(io::IO, ::MIME"text/plain", G::FPGroup)
print(io, "Finitely presented group generated by:\n\t{")
Base.print_array(io, permutedims(gens(G)))
println(io, " },")
println(io, "subject to relations:")
return Base.print_array(io, relations(G))
end
function Base.show(io::IO, G::FPGroup)
print(io, "")
Base.print_array(io, permutedims(gens(G)))
println(io, " | ")
print(io, "\t ")
Base.print_array(io, permutedims(relations(G)))
return print(io, "")
end
Base.show(io::IO, ::Type{<:FPGroup{T}}) where {T} =
print(io, FPGroup, "{$T, …}")
## GSymbol aka letter of alphabet
abstract type GSymbol end
Base.literal_pow(::typeof(^), t::GSymbol, ::Val{-1}) = inv(t)
function subscriptify(n::Integer)
subscript_0 = Int(0x2080) # Char(0x2080) -> subscript 0
return join([Char(subscript_0 + i) for i in reverse(digits(n))], "")
end