rework AutFN.jl (most functionality is in Groups module)

This commit is contained in:
kalmar 2017-06-06 12:04:48 +02:00
parent 86b8127322
commit c9434a646a

196
AutFN.jl
View File

@ -1,7 +1,10 @@
using ArgParse using ArgParse
using Nemo
Nemo.setpermstyle(:cycles)
using Groups using Groups
using GroupAlgebras using GroupRings
using PropertyT using PropertyT
import SCS.SCSSolver import SCS.SCSSolver
@ -16,155 +19,6 @@ Moreover, due to work of Potapchik and Rapinchuk [1] every real representation o
We need a different approach: Here we actually compute in Aut(𝔽₄) We need a different approach: Here we actually compute in Aut(𝔽₄)
=# =#
import Combinatorics.nthperm
SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
function generating_set_of_AutF(N::Int)
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
ɛs = [flip_AutSymbol(i) for i in 1:N];
S = vcat(ϱs,λs)
S = vcat(S..., σs..., ɛs)
S = vcat(S..., [inv(g) for g in S])
return Vector{AutWord}(unique(S)), one(AutWord)
end
function generating_set_of_OutF(N::Int)
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
ɛs = [flip_AutSymbol(i) for i in 1:N];
S = ϱs
push!(S, λs..., ɛs...)
push!(S,[inv(g) for g in S]...)
return Vector{AutWord}(unique(S)), one(AutWord)
end
function generating_set_of_SOutF(N::Int)
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
S = ϱs
push!(S, λs...)
push!(S,[inv(g) for g in S]...)
return Vector{AutWord}(unique(S)), one(AutWord)
end
function generating_set_of_Sym(N::Int)
σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
S = σs
push!(S, [inv(s) for s in S]...)
return Vector{AutWord}(unique(S)), one(AutWord)
end
function products(S1::Vector{AutWord}, S2::Vector{AutWord})
result = Vector{AutWord}()
seen = Set{Vector{FGWord}}()
n = length(S1)
for (i,x) in enumerate(S1)
for y in S2
z::AutWord = x*y
v::Vector{FGWord} = z(domain)
if !in(v, seen)
push!(seen, v)
push!(result, z)
end
end
end
return result
end
function products_images(S1::Vector{AutWord}, S2::Vector{AutWord})
result = Vector{Vector{FGWord}}()
seen = Set{Vector{FGWord}}()
n = length(S1)
for (i,x) in enumerate(S1)
z = x(domain)
for y in S2
v = y(z)
if !in(v, seen)
push!(seen, v)
push!(result, v)
end
end
end
return result
end
function hashed_product{T}(image::T, B, images_dict::Dict{T, Int})
n = size(B,1)
column = zeros(Int,n)
Threads.@threads for j in 1:n
w = (B[j])(image)
k = images_dict[w]
k 0 || throw(ArgumentError(
"($i,$j): $(x^-1)*$y don't seem to be supported on basis!"))
column[j] = k
end
return column
end
function create_product_matrix(images, basis::Vector{AutWord})
n = length(basis)
product_matrix = zeros(Int, (n, n));
print("Creating hashtable of images...")
@time images_dict = Dict{Vector{FGWord}, Int}(x => i
for (i,x) in enumerate(images))
for i in 1:n
z = (inv(basis[i]))(domain)
product_matrix[i,:] = hashed_product(z, basis, images_dict)
end
return product_matrix
end
function generate_balls{T}(S::Vector{T}, Id::T; radius=4)
sizes = Vector{Int}()
S = vcat([Id], S)
B = [Id]
for i in 1:radius
B = products(B, S);
push!(sizes, length(B))
end
return B, sizes
end
function ΔandSDPconstraints(Id::AutWord, S::Vector{AutWord}, r::Int=2)
B, sizes = generate_balls(S, Id, radius=2*r)
basis = B[1:sizes[r]]
B_images = unique([f(domain) for f in B])
println("Generated balls of sizes $sizes")
println("Creating product matrix...")
@time pm = create_product_matrix(B_images, basis)
println("Creating sdp_constratints...")
@time sdp_constraints = PropertyT.constraints_from_pm(pm)
L_coeff = PropertyT.splaplacian_coeff(S, basis, length(B_images))
Δ = PropertyT.GroupAlgebraElement(L_coeff, Array{Int,2}(pm))
return Δ, sdp_constraints
end
const symbols = [FGSymbol("x₁",1), FGSymbol("x₂",1), FGSymbol("x₃",1), FGSymbol("x₄",1), FGSymbol("x₅",1), FGSymbol("x₆",1)]
const TOL=1e-8
const N = 4
const domain = Vector{FGWord}(symbols[1:N])
function cpuinfo_physicalcores() function cpuinfo_physicalcores()
maxcore = -1 maxcore = -1
for line in eachline("/proc/cpuinfo") for line in eachline("/proc/cpuinfo")
@ -199,7 +53,7 @@ function parse_commandline()
"-N" "-N"
help = "Consider automorphisms of free group on N generators (default: N=3)" help = "Consider automorphisms of free group on N generators (default: N=3)"
arg_type = Int arg_type = Int
default = 3 default = 2
end end
return parse_args(s) return parse_args(s)
@ -214,27 +68,41 @@ end
# S() = generating_set_of_AutF(N) # S() = generating_set_of_AutF(N)
function main() function main()
parsed_args = parse_commandline() parsed_args = parse_commandline()
tol = parsed_args["tol"]
iterations = parsed_args["iterations"]
solver = SCSSolver(eps=tol, max_iters=iterations, verbose=true, linearsolver=SCS.Indirect)
N = parsed_args["N"]
upper_bound = parsed_args["upper-bound"]
name = "SOutF$N"
name = name*"-$(string(upper_bound))"
S() = generating_set_of_SOutF(N)
if parsed_args["cpus"] nothing if parsed_args["cpus"] nothing
if parsed_args["cpus"] > cpuinfo_physicalcores() if parsed_args["cpus"] > cpuinfo_physicalcores()
warn("Number of specified cores exceeds the physical core cound. Performance will suffer.") warn("Number of specified cores exceeds the physical core cound. Performance will suffer.")
end end
Blas.set_num_threads(parsed_args["cpus"]) Blas.set_num_threads(parsed_args["cpus"])
end end
@time PropertyT.check_property_T(name, S, solver, upper_bound, tol, 2)
tol = parsed_args["tol"]
iterations = parsed_args["iterations"]
# solver = SCSSolver(eps=tol, max_iters=iterations, verbose=true, linearsolver=SCS.Indirect)
solver = SCSSolver(eps=tol, max_iters=iterations, linearsolver=SCS.Direct)
N = parsed_args["N"]
upper_bound = parsed_args["upper-bound"]
name = "SOutF$N"
name = name*"-$(string(upper_bound))"
logger = PropertyT.setup_logging(name)
info(logger, "Group: $name")
info(logger, "Iterations: $iterations")
info(logger, "Precision: $tol")
info(logger, "Upper bound: $upper_bound")
AutFN = AutGroup(FreeGroup(N), special=true, outer=true)
S = generators(AutFN);
S = unique([S; [inv(s) for s in S]])
Id = AutFN()
@time PropertyT.check_property_T(name, S, Id, solver, upper_bound, tol, 2)
return 0 return 0
end end