rework AutFN.jl (most functionality is in Groups module)
This commit is contained in:
parent
86b8127322
commit
c9434a646a
196
AutFN.jl
196
AutFN.jl
@ -1,7 +1,10 @@
|
||||
using ArgParse
|
||||
|
||||
using Nemo
|
||||
Nemo.setpermstyle(:cycles)
|
||||
|
||||
using Groups
|
||||
using GroupAlgebras
|
||||
using GroupRings
|
||||
using PropertyT
|
||||
|
||||
import SCS.SCSSolver
|
||||
@ -16,155 +19,6 @@ Moreover, due to work of Potapchik and Rapinchuk [1] every real representation o
|
||||
We need a different approach: Here we actually compute in Aut(𝔽₄)
|
||||
=#
|
||||
|
||||
import Combinatorics.nthperm
|
||||
SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
|
||||
|
||||
function generating_set_of_AutF(N::Int)
|
||||
|
||||
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
|
||||
σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
|
||||
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||
ɛs = [flip_AutSymbol(i) for i in 1:N];
|
||||
|
||||
S = vcat(ϱs,λs)
|
||||
S = vcat(S..., σs..., ɛs)
|
||||
S = vcat(S..., [inv(g) for g in S])
|
||||
return Vector{AutWord}(unique(S)), one(AutWord)
|
||||
end
|
||||
|
||||
function generating_set_of_OutF(N::Int)
|
||||
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
|
||||
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||
ɛs = [flip_AutSymbol(i) for i in 1:N];
|
||||
|
||||
S = ϱs
|
||||
push!(S, λs..., ɛs...)
|
||||
push!(S,[inv(g) for g in S]...)
|
||||
|
||||
return Vector{AutWord}(unique(S)), one(AutWord)
|
||||
end
|
||||
|
||||
function generating_set_of_SOutF(N::Int)
|
||||
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
|
||||
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||
|
||||
S = ϱs
|
||||
push!(S, λs...)
|
||||
push!(S,[inv(g) for g in S]...)
|
||||
|
||||
return Vector{AutWord}(unique(S)), one(AutWord)
|
||||
end
|
||||
|
||||
|
||||
function generating_set_of_Sym(N::Int)
|
||||
σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
|
||||
|
||||
S = σs
|
||||
push!(S, [inv(s) for s in S]...)
|
||||
return Vector{AutWord}(unique(S)), one(AutWord)
|
||||
end
|
||||
|
||||
|
||||
function products(S1::Vector{AutWord}, S2::Vector{AutWord})
|
||||
result = Vector{AutWord}()
|
||||
seen = Set{Vector{FGWord}}()
|
||||
n = length(S1)
|
||||
for (i,x) in enumerate(S1)
|
||||
for y in S2
|
||||
z::AutWord = x*y
|
||||
v::Vector{FGWord} = z(domain)
|
||||
if !in(v, seen)
|
||||
push!(seen, v)
|
||||
push!(result, z)
|
||||
end
|
||||
end
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
function products_images(S1::Vector{AutWord}, S2::Vector{AutWord})
|
||||
result = Vector{Vector{FGWord}}()
|
||||
seen = Set{Vector{FGWord}}()
|
||||
n = length(S1)
|
||||
for (i,x) in enumerate(S1)
|
||||
z = x(domain)
|
||||
for y in S2
|
||||
v = y(z)
|
||||
if !in(v, seen)
|
||||
push!(seen, v)
|
||||
push!(result, v)
|
||||
end
|
||||
end
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
function hashed_product{T}(image::T, B, images_dict::Dict{T, Int})
|
||||
n = size(B,1)
|
||||
column = zeros(Int,n)
|
||||
Threads.@threads for j in 1:n
|
||||
w = (B[j])(image)
|
||||
k = images_dict[w]
|
||||
k ≠ 0 || throw(ArgumentError(
|
||||
"($i,$j): $(x^-1)*$y don't seem to be supported on basis!"))
|
||||
column[j] = k
|
||||
end
|
||||
return column
|
||||
end
|
||||
|
||||
function create_product_matrix(images, basis::Vector{AutWord})
|
||||
n = length(basis)
|
||||
product_matrix = zeros(Int, (n, n));
|
||||
print("Creating hashtable of images...")
|
||||
@time images_dict = Dict{Vector{FGWord}, Int}(x => i
|
||||
for (i,x) in enumerate(images))
|
||||
|
||||
for i in 1:n
|
||||
z = (inv(basis[i]))(domain)
|
||||
product_matrix[i,:] = hashed_product(z, basis, images_dict)
|
||||
end
|
||||
return product_matrix
|
||||
end
|
||||
|
||||
function generate_balls{T}(S::Vector{T}, Id::T; radius=4)
|
||||
sizes = Vector{Int}()
|
||||
S = vcat([Id], S)
|
||||
B = [Id]
|
||||
for i in 1:radius
|
||||
B = products(B, S);
|
||||
push!(sizes, length(B))
|
||||
end
|
||||
return B, sizes
|
||||
end
|
||||
|
||||
|
||||
function ΔandSDPconstraints(Id::AutWord, S::Vector{AutWord}, r::Int=2)
|
||||
B, sizes = generate_balls(S, Id, radius=2*r)
|
||||
basis = B[1:sizes[r]]
|
||||
B_images = unique([f(domain) for f in B])
|
||||
|
||||
println("Generated balls of sizes $sizes")
|
||||
|
||||
println("Creating product matrix...")
|
||||
@time pm = create_product_matrix(B_images, basis)
|
||||
println("Creating sdp_constratints...")
|
||||
@time sdp_constraints = PropertyT.constraints_from_pm(pm)
|
||||
|
||||
L_coeff = PropertyT.splaplacian_coeff(S, basis, length(B_images))
|
||||
Δ = PropertyT.GroupAlgebraElement(L_coeff, Array{Int,2}(pm))
|
||||
|
||||
return Δ, sdp_constraints
|
||||
end
|
||||
|
||||
const symbols = [FGSymbol("x₁",1), FGSymbol("x₂",1), FGSymbol("x₃",1), FGSymbol("x₄",1), FGSymbol("x₅",1), FGSymbol("x₆",1)]
|
||||
|
||||
const TOL=1e-8
|
||||
const N = 4
|
||||
const domain = Vector{FGWord}(symbols[1:N])
|
||||
|
||||
function cpuinfo_physicalcores()
|
||||
maxcore = -1
|
||||
for line in eachline("/proc/cpuinfo")
|
||||
@ -199,7 +53,7 @@ function parse_commandline()
|
||||
"-N"
|
||||
help = "Consider automorphisms of free group on N generators (default: N=3)"
|
||||
arg_type = Int
|
||||
default = 3
|
||||
default = 2
|
||||
end
|
||||
|
||||
return parse_args(s)
|
||||
@ -214,27 +68,41 @@ end
|
||||
# S() = generating_set_of_AutF(N)
|
||||
|
||||
function main()
|
||||
|
||||
parsed_args = parse_commandline()
|
||||
|
||||
tol = parsed_args["tol"]
|
||||
iterations = parsed_args["iterations"]
|
||||
|
||||
solver = SCSSolver(eps=tol, max_iters=iterations, verbose=true, linearsolver=SCS.Indirect)
|
||||
|
||||
N = parsed_args["N"]
|
||||
upper_bound = parsed_args["upper-bound"]
|
||||
|
||||
name = "SOutF$N"
|
||||
name = name*"-$(string(upper_bound))"
|
||||
S() = generating_set_of_SOutF(N)
|
||||
|
||||
if parsed_args["cpus"] ≠ nothing
|
||||
if parsed_args["cpus"] > cpuinfo_physicalcores()
|
||||
warn("Number of specified cores exceeds the physical core cound. Performance will suffer.")
|
||||
end
|
||||
Blas.set_num_threads(parsed_args["cpus"])
|
||||
end
|
||||
@time PropertyT.check_property_T(name, S, solver, upper_bound, tol, 2)
|
||||
|
||||
tol = parsed_args["tol"]
|
||||
iterations = parsed_args["iterations"]
|
||||
|
||||
# solver = SCSSolver(eps=tol, max_iters=iterations, verbose=true, linearsolver=SCS.Indirect)
|
||||
solver = SCSSolver(eps=tol, max_iters=iterations, linearsolver=SCS.Direct)
|
||||
|
||||
N = parsed_args["N"]
|
||||
upper_bound = parsed_args["upper-bound"]
|
||||
|
||||
name = "SOutF$N"
|
||||
name = name*"-$(string(upper_bound))"
|
||||
|
||||
logger = PropertyT.setup_logging(name)
|
||||
|
||||
info(logger, "Group: $name")
|
||||
info(logger, "Iterations: $iterations")
|
||||
info(logger, "Precision: $tol")
|
||||
info(logger, "Upper bound: $upper_bound")
|
||||
|
||||
AutFN = AutGroup(FreeGroup(N), special=true, outer=true)
|
||||
S = generators(AutFN);
|
||||
S = unique([S; [inv(s) for s in S]])
|
||||
Id = AutFN()
|
||||
|
||||
@time PropertyT.check_property_T(name, S, Id, solver, upper_bound, tol, 2)
|
||||
return 0
|
||||
end
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user