mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-14 14:15:28 +01:00
118 lines
2.9 KiB
Plaintext
118 lines
2.9 KiB
Plaintext
|
Symmetrise := function(elts)
|
||
|
return Unique(Concatenation(elts, List(elts, Inverse)));
|
||
|
end;
|
||
|
|
||
|
MYAllProducts := function(elts1, elts2)
|
||
|
local products, elt;
|
||
|
products := [];
|
||
|
for elt in elts1 do
|
||
|
products := Concatenation(products, elt*elts2);
|
||
|
od;
|
||
|
return products;
|
||
|
end;
|
||
|
|
||
|
Products := function(elts, n)
|
||
|
local products, i;
|
||
|
if n<=0 then
|
||
|
return [ ];
|
||
|
elif n = 1 then
|
||
|
return elts;
|
||
|
else
|
||
|
products := elts;
|
||
|
for i in [2..n] do
|
||
|
products := MYAllProducts(elts, products);
|
||
|
od;
|
||
|
return products;
|
||
|
fi;
|
||
|
end;
|
||
|
|
||
|
Laplacian := function(G, generating_set)
|
||
|
local QG, emb, result, S, g, elt;
|
||
|
QG := GroupRing(Rationals, G);;
|
||
|
emb := Embedding(G,QG);;
|
||
|
|
||
|
S := generating_set;
|
||
|
|
||
|
result := Length(S)*One(QG);
|
||
|
for g in S do
|
||
|
result := result - g^emb;
|
||
|
od;
|
||
|
return result;
|
||
|
end;
|
||
|
|
||
|
Vectorise := function(elt, basis)
|
||
|
local result, l, i, g, coeff, axis;
|
||
|
Assert(0, IsSupportedOn(basis, elt),
|
||
|
"AssertionError: Element of interest is not supported on the basis!");
|
||
|
result := List(0*[1..Length(basis)]);
|
||
|
|
||
|
l := CoefficientsAndMagmaElements(elt);
|
||
|
for i in [1..Length(l)/2] do
|
||
|
g := l[2*i-1];
|
||
|
coeff := l[2*i];
|
||
|
axis := Position(basis, g);
|
||
|
result[axis] := result[axis] + coeff;
|
||
|
od;
|
||
|
return result;
|
||
|
end;
|
||
|
|
||
|
Constraints := function(basis)
|
||
|
local result, i, j, pos;
|
||
|
result := [];
|
||
|
for i in [1..Length(basis)] do
|
||
|
Add(result,[]);
|
||
|
od;
|
||
|
for i in [1..Length(basis)] do
|
||
|
for j in [1..Length(basis)] do
|
||
|
pos := Position(basis, Inverse(basis[i])*basis[j]);
|
||
|
if not pos = fail then
|
||
|
Add(result[pos], [i,j]);
|
||
|
fi;
|
||
|
od;
|
||
|
od;
|
||
|
return result;
|
||
|
end;
|
||
|
|
||
|
USupport := function(x)
|
||
|
return Unique(Support(x));
|
||
|
end;
|
||
|
|
||
|
IsSupportedOn := function(basis, elt)
|
||
|
local elt_supp, x;
|
||
|
elt_supp := USupport(elt);
|
||
|
for x in elt_supp do
|
||
|
if not x in basis then
|
||
|
return x;
|
||
|
fi;
|
||
|
od;
|
||
|
return true;
|
||
|
end;
|
||
|
|
||
|
SDPGenerateAll := function(G, S, basis, name)
|
||
|
local QG, emb, delta, delta_sq, delta_vec, delta_sq_vec, product_constr;
|
||
|
QG := GroupRing(Rationals, G);;
|
||
|
emb := Embedding(G,QG);;
|
||
|
|
||
|
delta := Laplacian(G, S);;
|
||
|
delta_sq := delta^2;;
|
||
|
if not IsSupportedOn(basis, delta_sq) then
|
||
|
# Print("delta_sq is not supported on basis\n");
|
||
|
return fail;
|
||
|
else
|
||
|
PrintTo(Concatenation("./basis.", name), basis);
|
||
|
Print("Written basis to ", Concatenation("./basis.", name), "\n");
|
||
|
delta_vec := Vectorise(delta, basis);;
|
||
|
PrintTo(Concatenation("./delta.", name), delta_vec);
|
||
|
Print("Written delta to ", Concatenation("./delta.", name), "\n");
|
||
|
delta_sq_vec := Vectorise(delta_sq, basis);;
|
||
|
PrintTo(Concatenation("./delta_sq.", name), delta_sq_vec);
|
||
|
Print("Written delta_sq to ", Concatenation("./delta_sq.", name), "\n");
|
||
|
|
||
|
product_constr := Constraints(basis);;
|
||
|
PrintTo(Concatenation("./constraints.", name), product_constr);
|
||
|
Print("Written Matrix Constraints to ", Concatenation("./Constraints.", name), "\n");
|
||
|
return "Done!";
|
||
|
fi;
|
||
|
|
||
|
end;;
|