1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-14 14:15:28 +01:00
PropertyT.jl/Matrix_Constraints.g
2016-12-19 15:44:52 +01:00

118 lines
2.9 KiB
Plaintext

Symmetrise := function(elts)
return Unique(Concatenation(elts, List(elts, Inverse)));
end;
MYAllProducts := function(elts1, elts2)
local products, elt;
products := [];
for elt in elts1 do
products := Concatenation(products, elt*elts2);
od;
return products;
end;
Products := function(elts, n)
local products, i;
if n<=0 then
return [ ];
elif n = 1 then
return elts;
else
products := elts;
for i in [2..n] do
products := MYAllProducts(elts, products);
od;
return products;
fi;
end;
Laplacian := function(G, generating_set)
local QG, emb, result, S, g, elt;
QG := GroupRing(Rationals, G);;
emb := Embedding(G,QG);;
S := generating_set;
result := Length(S)*One(QG);
for g in S do
result := result - g^emb;
od;
return result;
end;
Vectorise := function(elt, basis)
local result, l, i, g, coeff, axis;
Assert(0, IsSupportedOn(basis, elt),
"AssertionError: Element of interest is not supported on the basis!");
result := List(0*[1..Length(basis)]);
l := CoefficientsAndMagmaElements(elt);
for i in [1..Length(l)/2] do
g := l[2*i-1];
coeff := l[2*i];
axis := Position(basis, g);
result[axis] := result[axis] + coeff;
od;
return result;
end;
Constraints := function(basis)
local result, i, j, pos;
result := [];
for i in [1..Length(basis)] do
Add(result,[]);
od;
for i in [1..Length(basis)] do
for j in [1..Length(basis)] do
pos := Position(basis, Inverse(basis[i])*basis[j]);
if not pos = fail then
Add(result[pos], [i,j]);
fi;
od;
od;
return result;
end;
USupport := function(x)
return Unique(Support(x));
end;
IsSupportedOn := function(basis, elt)
local elt_supp, x;
elt_supp := USupport(elt);
for x in elt_supp do
if not x in basis then
return x;
fi;
od;
return true;
end;
SDPGenerateAll := function(G, S, basis, name)
local QG, emb, delta, delta_sq, delta_vec, delta_sq_vec, product_constr;
QG := GroupRing(Rationals, G);;
emb := Embedding(G,QG);;
delta := Laplacian(G, S);;
delta_sq := delta^2;;
if not IsSupportedOn(basis, delta_sq) then
# Print("delta_sq is not supported on basis\n");
return fail;
else
PrintTo(Concatenation("./basis.", name), basis);
Print("Written basis to ", Concatenation("./basis.", name), "\n");
delta_vec := Vectorise(delta, basis);;
PrintTo(Concatenation("./delta.", name), delta_vec);
Print("Written delta to ", Concatenation("./delta.", name), "\n");
delta_sq_vec := Vectorise(delta_sq, basis);;
PrintTo(Concatenation("./delta_sq.", name), delta_sq_vec);
Print("Written delta_sq to ", Concatenation("./delta_sq.", name), "\n");
product_constr := Constraints(basis);;
PrintTo(Concatenation("./constraints.", name), product_constr);
Print("Written Matrix Constraints to ", Concatenation("./Constraints.", name), "\n");
return "Done!";
fi;
end;;