1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-15 06:25:28 +01:00
PropertyT.jl/src/checksolution.jl

156 lines
5.6 KiB
Julia
Raw Normal View History

2017-03-13 14:49:55 +01:00
import Base: rationalize
using ValidatedNumerics
2017-03-20 21:41:34 +01:00
ValidatedNumerics.setrounding(Interval, :correct)
ValidatedNumerics.setformat(:standard)
2017-03-13 14:49:55 +01:00
function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T)
return Δ*Δ - κ*Δ
end
2017-03-14 16:40:35 +01:00
function algebra_square(vector, elt)
zzz = zeros(eltype(vector), elt.coefficients)
2017-03-13 14:49:55 +01:00
zzz[1:length(vector)] = vector
# new_base_elt = GroupAlgebraElement(zzz, elt.product_matrix)
# return (new_base_elt*new_base_elt).coefficients
return GroupAlgebras.algebra_multiplication(zzz, zzz, elt.product_matrix)
end
2017-03-14 16:40:35 +01:00
function compute_SOS(sqrt_matrix, elt)
2017-03-13 14:49:55 +01:00
n = size(sqrt_matrix,2)
2017-03-14 16:40:35 +01:00
T = eltype(sqrt_matrix)
# result = zeros(T, length(elt.coefficients))
# for i in 1:n
# result += algebra_square(sqrt_matrix[:,i], elt)
# end
result = @parallel (+) for i in 1:n
PropertyT.algebra_square(sqrt_matrix[:,i], elt)
2017-03-13 14:49:55 +01:00
end
2017-03-14 16:40:35 +01:00
return GroupAlgebraElement(result, elt.product_matrix)
2017-03-13 14:49:55 +01:00
end
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
sqrt_corrected = similar(sqrt_matrix)
l = size(sqrt_matrix,2)
for i in 1:l
col = view(sqrt_matrix,:,i)
sqrt_corrected[:,i] = col - sum(col)//l
# @assert sum(sqrt_corrected[:,i]) == 0
end
return sqrt_corrected
end
import ValidatedNumerics
function (±){T<:Number}(X::AbstractArray{T}, tol::Real)
r{T}(x::T) = (x == zero(T)? @interval(0) : x ± tol)
return r.(X)
end
(±)(X::GroupAlgebraElement, tol::Real) = GroupAlgebraElement(X.coefficients ± tol, X.product_matrix)
function Base.rationalize{T<:Integer, S<:Real}(::Type{T},
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
r(x) = rationalize(T, x, tol=tol)
return r.(X)
end
(x, tol::Real) = rationalize(BigInt, x, tol=tol)
2017-03-14 23:35:52 +01:00
function distance_to_cone{T<:Rational}(κ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T})
2017-03-14 23:35:52 +01:00
SOS = compute_SOS(sqrt_matrix, Δ)
2017-03-13 14:49:55 +01:00
2017-03-14 23:35:52 +01:00
SOS_diff = EOI(Δ, κ) - SOS
2017-03-13 14:49:55 +01:00
eoi_SOS_L₁_dist = norm(SOS_diff,1)
2017-03-16 14:29:11 +01:00
info(logger, "κ = (≈$(@sprintf("%.10f", float(κ)))")
ɛ_dist = GroupAlgebras.ɛ(SOS_diff)
if ɛ_dist 0//1
warn(logger, "The SOS is not in the augmentation ideal, number below are meaningless!")
2017-03-13 14:49:55 +01:00
end
info(logger, "ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) = $ɛ_dist")
info(logger, "‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ = $(@sprintf("%.10f", float(eoi_SOS_L₁_dist)))")
2017-03-13 14:49:55 +01:00
distance_to_cone = κ - 2^3*eoi_SOS_L₁_dist
return distance_to_cone
end
function distance_to_cone{T<:Rational, S<:Interval}(κ::T, sqrt_matrix::Array{S,2}, Δ::GroupAlgebraElement{T})
2017-03-14 23:35:52 +01:00
SOS = compute_SOS(sqrt_matrix, Δ)
info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(GroupAlgebras.ɛ(SOS))")
2017-03-14 23:35:52 +01:00
SOS_diff = EOI(Δ, κ) - SOS
eoi_SOS_L₁_dist = norm(SOS_diff,1)
2017-03-13 14:49:55 +01:00
2017-03-16 14:29:11 +01:00
info(logger, "κ = (≈$(@sprintf("%.10f",float(κ))))")
ɛ_dist = GroupAlgebras.ɛ(SOS_diff)
info(logger, "ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)")
info(logger, "‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L₁_dist)")
2017-03-13 14:49:55 +01:00
2017-03-14 23:35:52 +01:00
distance_to_cone = κ - 2^3*eoi_SOS_L₁_dist
return distance_to_cone
2017-03-13 14:49:55 +01:00
end
function distance_to_cone{T<:AbstractFloat}(κ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T})
2017-03-14 23:35:52 +01:00
SOS = compute_SOS(sqrt_matrix, Δ)
SOS_diff = EOI(Δ, κ) - SOS
eoi_SOS_L₁_dist = norm(SOS_diff,1)
2017-03-15 17:56:01 +01:00
info(logger, "κ = ")
ɛ_dist = GroupAlgebras.ɛ(SOS_diff)
2017-03-16 10:07:35 +01:00
info(logger, "ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", ɛ_dist))")
info(logger, "‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L₁_dist))")
2017-03-14 23:35:52 +01:00
distance_to_cone = κ - 2^3*eoi_SOS_L₁_dist
return distance_to_cone
end
2017-03-13 14:49:55 +01:00
2017-03-14 23:35:52 +01:00
function check_distance_to_positive_cone(Δ::GroupAlgebraElement, κ, A;
tol=1e-7, rational=false)
2017-03-13 14:49:55 +01:00
isapprox(eigvals(A), abs(eigvals(A)), atol=tol) ||
warn("The solution matrix doesn't seem to be positive definite!")
@assert A == Symmetric(A)
A_sqrt = real(sqrtm(A))
2017-03-14 23:35:52 +01:00
2017-03-15 17:56:01 +01:00
info(logger, "------------------------------------------------------------")
info(logger, "")
info(logger, "Checking in floating-point arithmetic...")
2017-03-15 20:13:53 +01:00
t = @timed fp_distance = distance_to_cone(κ, A_sqrt, Δ)
info(logger, timed_msg(t))
2017-03-16 10:07:35 +01:00
info(logger, "Floating point distance (to positive cone) ≈ $(@sprintf("%.10f", fp_distance))")
2017-03-15 17:56:01 +01:00
info(logger, "------------------------------------------------------------")
2017-03-13 14:49:55 +01:00
info(logger, "Projecting columns of rationalized A_sqrt to the augmentation ideal...")
2017-03-14 16:40:53 +01:00
δ = eps(κ)
A_sqrt_ = (A_sqrt, δ)
t = @timed A_sqrt__aug = correct_to_augmentation_ideal(A_sqrt_)
info(logger, timed_msg(t))
2017-03-14 16:40:53 +01:00
κ_ = (κ, δ)
Δ_ = (Δ, δ)
2017-03-13 14:49:55 +01:00
info(logger, "Checking in interval arithmetic")
2017-03-14 16:40:53 +01:00
A_sqrt__augᴵ = A_sqrt__aug ± δ
2017-03-15 20:13:53 +01:00
t = @timed Interval_dist_to_Σ² = distance_to_cone(κ_, A_sqrt__augᴵ, Δ_)
info(logger, timed_msg(t))
2017-03-16 10:07:35 +01:00
info(logger, "The Augmentation-projected actual distance (to positive cone) ≥ $(@sprintf("%.10f", Interval_dist_to_Σ².lo))")
2017-03-15 17:56:01 +01:00
info(logger, "------------------------------------------------------------")
2017-03-13 14:49:55 +01:00
2017-03-16 14:29:11 +01:00
if Interval_dist_to_Σ².lo 0 || !rational
2017-03-13 14:49:55 +01:00
return Interval_dist_to_Σ².lo
else
info(logger, "Checking Projected SOS decomposition in exact rational arithmetic...")
2017-03-15 20:13:53 +01:00
t = @timed _dist_to_Σ² = distance_to_cone(κ_, A_sqrt__aug, Δ_)
info(logger, timed_msg(t))
2017-03-13 14:49:55 +01:00
@assert isa(_dist_to_Σ², Rational)
2017-03-15 17:56:01 +01:00
info(logger, "Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(_dist_to_Σ²,8)))")
info(logger, "------------------------------------------------------------")
2017-03-13 14:49:55 +01:00
return _dist_to_Σ²
end
end