1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 15:25:29 +01:00
PropertyT.jl/src/Orbit-wise.jl

203 lines
5.8 KiB
Julia
Raw Normal View History

2017-06-22 14:12:35 +02:00
using JuMP
using SCS
2017-06-22 15:15:43 +02:00
export Settings, OrbitData
2017-06-22 14:12:35 +02:00
2018-08-20 03:54:03 +02:00
struct OrbitData{T<:AbstractArray{Float64, 2}}
orbits::Vector{Vector{Int}}
Uπs::Vector{T}
2018-01-01 14:06:33 +01:00
dims::Vector{Int}
2017-06-22 14:12:35 +02:00
end
function OrbitData(sett::Settings)
2018-08-20 03:54:03 +02:00
info("Loading Uπs, dims, orbits...")
2018-01-02 02:55:53 +01:00
Uπs = load(filename(prepath(sett), :Uπs), "Uπs")
2018-01-01 14:06:33 +01:00
nzros = [i for i in 1:length(Uπs) if size(Uπs[i],2) !=0]
Uπs = Uπs[nzros]
2018-08-20 03:54:03 +02:00
Uπs = map(x -> sparsify!(x, sett.tol/100, verbose=true), Uπs)
2018-01-01 14:06:33 +01:00
#dimensions of the corresponding πs:
2018-01-02 02:55:53 +01:00
dims = load(filename(prepath(sett), :Uπs), "dims")[nzros]
2017-06-22 15:09:46 +02:00
2018-08-20 03:54:03 +02:00
orbits = load(filename(prepath(sett), :orbits), "orbits");
2017-06-22 15:09:46 +02:00
2018-08-20 03:54:03 +02:00
return OrbitData(orbits, Uπs, dims)
2017-06-22 15:09:46 +02:00
end
2017-06-22 14:12:35 +02:00
include("OrbitDecomposition.jl")
dens(M::SparseMatrixCSC) = nnz(M)/length(M)
dens(M::AbstractArray) = countnz(M)/length(M)
2017-07-26 10:29:11 +02:00
2017-08-27 21:23:42 +02:00
function sparsify!{Tv,Ti}(M::SparseMatrixCSC{Tv,Ti}, eps=eps(Tv); verbose=false)
2018-01-01 14:06:33 +01:00
densM = dens(M)
for i in eachindex(M.nzval)
if abs(M.nzval[i]) < eps
M.nzval[i] = zero(Tv)
end
end
dropzeros!(M)
if verbose
info("Sparsified density:", rpad(densM, 20), "", rpad(dens(M), 20), " ($(nnz(M)) non-zeros)")
2018-01-01 14:06:33 +01:00
end
return M
2017-06-22 14:12:35 +02:00
end
function sparsify!{T}(M::AbstractArray{T}, eps=eps(T); verbose=false)
2018-01-01 14:06:33 +01:00
densM = dens(M)
if verbose
info("Sparsifying $(size(M))-matrix... ")
end
for n in eachindex(M)
if abs(M[n]) < eps
M[n] = zero(T)
end
2018-01-01 14:06:33 +01:00
end
2018-01-01 14:06:33 +01:00
if verbose
info("$(rpad(densM, 20))$(rpad(dens(M),20))), ($(countnz(M)) non-zeros)")
2018-01-01 14:06:33 +01:00
end
2018-01-01 14:06:33 +01:00
return sparse(M)
end
sparsify{T}(U::AbstractArray{T}, tol=eps(T); verbose=false) = sparsify!(deepcopy(U), tol, verbose=verbose)
function constrLHS(m::JuMP.Model, cnstr, Us, Ust, dims, vars, eps=100*eps(1.0))
2018-01-01 14:06:33 +01:00
M = [PropertyT.sparsify!(dims[π].*Ust[π]*cnstr*Us[π], eps) for π in 1:endof(Us)]
return @expression(m, sum(vecdot(M[π], vars[π]) for π in 1:endof(Us)))
end
function addconstraints!(m::JuMP.Model, X::GroupRingElem, orderunit::GroupRingElem, λ::JuMP.Variable, P, data::OrbitData)
orderunit_orb = orbit_spvector(orderunit.coeffs, data.orbits)
X_orb = orbit_spvector(X.coeffs, data.orbits)
Ust = [U' for U in data.Uπs]
n = size(parent(X).pm, 1)
for t in 1:length(X_orb)
x, u = X_orb[t], orderunit_orb[t]
cnstrs = [constraint(parent(X).pm, o) for o in data.orbits[t]]
lhs = constrLHS(m, orbit_constraint(cnstrs,n), data.Uπs, Ust, data.dims, P)
JuMP.@constraint(m, lhs == x - λ*u)
2018-01-01 14:06:33 +01:00
end
2017-06-22 14:12:35 +02:00
end
function init_model(m, sizes)
P = Vector{Array{JuMP.Variable,2}}(length(sizes))
2017-11-05 20:55:53 +01:00
2018-01-01 14:06:33 +01:00
for (k,s) in enumerate(sizes)
P[k] = JuMP.@variable(m, [i=1:s, j=1:s])
JuMP.@SDconstraint(m, P[k] >= 0.0)
end
2017-11-05 20:55:53 +01:00
return P
2017-06-22 15:11:14 +02:00
end
function SOS_problem(X::GroupRingElem, orderunit::GroupRingElem, data::OrbitData; upper_bound=Inf)
m = JuMP.Model();
P = init_model(m, size.(data.Uπs,2))
2017-06-22 14:12:35 +02:00
λ = JuMP.@variable(m, λ)
if upper_bound < Inf
2018-09-03 10:23:08 +02:00
JuMP.@constraint(m, λ <= upper_bound)
2018-01-01 14:06:33 +01:00
end
2017-06-22 14:12:35 +02:00
info("Adding $(length(data.orbits)) constraints... ")
2017-06-22 14:12:35 +02:00
@time addconstraints!(m, X, orderunit, λ, P, data)
2017-06-22 14:12:35 +02:00
JuMP.@objective(m, Max, λ)
return m, λ, P
2017-06-22 14:12:35 +02:00
end
2018-08-20 04:00:58 +02:00
function computeλandP(Δ::GroupRingElem, sett::Settings, ws=nothing; solverlog=tempname()*".log")
@time orbit_data = OrbitData(sett);
info("Creating SDP problem...")
2017-06-22 14:12:35 +02:00
2018-08-20 04:00:58 +02:00
SDP_problem, varλ, varP = SOS_problem(Δ^2, Δ, orbit_data, upper_bound=sett.upper_bound)
JuMP.setsolver(SDP_problem, sett.solver)
info(Base.repr(SDP_problem))
2017-08-27 19:06:17 +02:00
2018-08-20 04:00:58 +02:00
@time λ, P, ws = solve_SDP(SDP_problem, varλ, varP, ws, solverlog=solverlog)
2017-06-22 14:12:35 +02:00
2018-01-01 23:57:03 +01:00
fname = filename(fullpath(sett), :P)
2018-08-20 04:00:58 +02:00
save(joinpath(dirname(fname), "orig_"*basename(fname)), "origP", P)
info("Reconstructing P...")
preps = load_preps(filename(prepath(sett), :preps), sett.autS)
@time recP = reconstruct_sol(preps, orbit_data.Uπs, P, orbit_data.dims)
return λ, recP, ws
2017-06-22 14:12:35 +02:00
end
2018-07-31 10:21:54 +02:00
function load_preps(fname::String, G::Group)
lded_preps = load(fname, "perms_d")
permG = PermutationGroup(length(first(lded_preps)))
@assert length(lded_preps) == order(G)
return Dict(k=>permG(v) for (k,v) in zip(elements(G), lded_preps))
end
function save_preps(fname::String, preps)
autS = parent(first(keys(preps)))
2018-08-20 04:02:44 +02:00
save(fname, "perms_d", [preps[elt].d for elt in elements(autS)])
end
2017-06-22 15:11:39 +02:00
function check_property_T(sett::Settings)
2017-06-22 14:12:35 +02:00
ex(s::Symbol) = exists(filename(prepath(sett), s))
2018-01-02 03:19:57 +01:00
if ex(:pm) && ex()
# cached
Δ = loadLaplacian(prepath(sett), parent(sett.S[1]))
else
# compute
Δ = computeLaplacian(sett.S, sett.radius)
save(filename(prepath(sett), :pm), "pm", parent(Δ).pm)
save(filename(prepath(sett), ), "Δ", Δ.coeffs)
end
files_exist = ex.([:Uπs, :orbits, :preps])
2018-01-02 03:19:57 +01:00
2018-08-20 04:01:34 +02:00
if !all(files_exist)
compute_orbit_data(prepath(sett), parent(Δ), sett.autS)
2018-01-02 03:19:57 +01:00
end
2018-01-01 14:06:33 +01:00
2018-08-20 04:01:34 +02:00
files_exist = exists(filename(fullpath(sett), )) &&
exists(filename(fullpath(sett), :P))
2018-01-01 23:57:03 +01:00
2018-08-20 04:01:34 +02:00
if !sett.warmstart && files_exist
λ, P = loadλandP(fullpath(sett))
2018-01-01 14:06:33 +01:00
else
2018-08-20 04:01:34 +02:00
warmfile = filename(fullpath(sett), :warm)
if sett.warmstart && exists(warmfile)
ws = load(warmfile, "warmstart")
else
ws = nothing
end
λ, P, ws = computeλandP(Δ, sett, ws,
solverlog=filename(fullpath(sett), :solverlog))
saveλandP(fullpath(sett), λ, P, ws)
2018-01-01 14:06:33 +01:00
2018-08-20 04:01:34 +02:00
if λ < 0
warn("Solver did not produce a valid solution!")
end
2018-01-01 14:06:33 +01:00
end
2018-08-19 20:05:45 +02:00
info("λ = ")
info("sum(P) = $(sum(P))")
info("maximum(P) = $(maximum(P))")
info("minimum(P) = $(minimum(P))")
2018-01-01 14:06:33 +01:00
2018-01-02 03:22:46 +01:00
isapprox(eigvals(P), abs.(eigvals(P)), atol=sett.tol) ||
2018-01-01 14:06:33 +01:00
warn("The solution matrix doesn't seem to be positive definite!")
2018-08-20 04:02:04 +02:00
return interpret_results(sett.name, Δ, sett.radius, length(sett.S), λ, P)
2017-06-22 14:12:35 +02:00
end