1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 15:25:29 +01:00
PropertyT.jl/src/checksolution.jl

161 lines
5.7 KiB
Julia
Raw Normal View History

2017-03-13 14:49:55 +01:00
import Base: rationalize
using ValidatedNumerics
2017-03-20 21:41:34 +01:00
ValidatedNumerics.setrounding(Interval, :correct)
# ValidatedNumerics.setrounding(Interval, :fast) #which is slower??
2017-03-20 21:41:34 +01:00
ValidatedNumerics.setformat(:standard)
# setprecision(Interval, 53) # slightly faster than 256
function EOI{T<:Number}(Δ::GroupRingElem{T}, λ::T)
2017-04-01 15:21:57 +02:00
return Δ*Δ - λ*Δ
2017-03-13 14:49:55 +01:00
end
function groupring_square(vect, elt)
zzz = zeros(eltype(vect), elt.coeffs)
zzz[1:length(vect)] = vect
return GroupRings.groupring_mult(zzz, zzz, parent(elt).pm)
2017-03-13 14:49:55 +01:00
end
2017-03-14 16:40:35 +01:00
function compute_SOS(sqrt_matrix, elt)
2017-03-13 14:49:55 +01:00
n = size(sqrt_matrix,2)
2017-03-14 16:40:35 +01:00
T = eltype(sqrt_matrix)
# result = zeros(T, length(elt.coeffs))
2017-03-14 16:40:35 +01:00
# for i in 1:n
# result += groupring_square(sqrt_matrix[:,i], elt)
2017-03-14 16:40:35 +01:00
# end
result = @parallel (+) for i in 1:n
groupring_square(sqrt_matrix[:,i], elt)
2017-03-13 14:49:55 +01:00
end
return GroupRingElem(result, parent(elt))
2017-03-13 14:49:55 +01:00
end
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
sqrt_corrected = similar(sqrt_matrix)
l = size(sqrt_matrix,2)
for i in 1:l
col = sqrt_matrix[:,i]
2017-03-13 14:49:55 +01:00
sqrt_corrected[:,i] = col - sum(col)//l
# @assert sum(sqrt_corrected[:,i]) == 0
end
return sqrt_corrected
end
import ValidatedNumerics
function (±){T<:Number}(X::AbstractArray{T}, tol::Real)
r{T}(x::T) = (x == zero(T)? @interval(0) : x ± tol)
return r.(X)
end
(±)(X::GroupRingElem, tol::Real) = GroupRingElem(X.coeffs ± tol, parent(X))
function Base.rationalize{T<:Integer, S<:Real}(::Type{T},
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
r(x) = rationalize(T, x, tol=tol)
return r.(X)
end
(x, tol::Real) = rationalize(BigInt, x, tol=tol)
2017-03-14 23:35:52 +01:00
2017-06-04 20:28:45 +02:00
function distance_to_cone{T<:Rational}(λ::T, sqrt_matrix::Array{T,2}, Δ::GroupRingElem{T}; len=4)
2017-03-14 23:35:52 +01:00
SOS = compute_SOS(sqrt_matrix, Δ)
2017-03-13 14:49:55 +01:00
2017-04-01 15:21:57 +02:00
SOS_diff = EOI(Δ, λ) - SOS
2017-06-04 20:30:34 +02:00
eoi_SOS_L1_dist = norm(SOS_diff,1)
2017-03-13 14:49:55 +01:00
2017-04-01 15:21:57 +02:00
info(logger, "λ = (≈$(@sprintf("%.10f", float(λ)))")
2017-05-28 20:01:03 +02:00
ɛ_dist = GroupRings.augmentation(SOS_diff)
if ɛ_dist 0//1
2017-06-04 20:30:34 +02:00
warn(logger, "The SOS is not in the augmentation ideal, numbers below are meaningless!")
2017-03-13 14:49:55 +01:00
end
2017-04-01 15:21:57 +02:00
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) = $ɛ_dist")
2017-06-04 20:30:34 +02:00
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ = $(@sprintf("%.10f", float(eoi_SOS_L1_dist)))")
2017-06-04 20:28:45 +02:00
distance_to_cone = λ - 2^(len-1)*eoi_SOS_L1_dist
2017-03-13 14:49:55 +01:00
return distance_to_cone
end
2017-06-04 20:28:45 +02:00
function distance_to_cone{T<:Rational, S<:Interval}(λ::T, sqrt_matrix::Array{S,2}, Δ::GroupRingElem{T}; len=4)
2017-03-14 23:35:52 +01:00
SOS = compute_SOS(sqrt_matrix, Δ)
2017-05-28 20:01:03 +02:00
info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(GroupRings.augmentation(SOS))")
2017-06-04 20:30:34 +02:00
λ_int = @interval(λ)
2017-06-05 17:27:55 +02:00
Δ_int = GroupRingElem([@interval(c) for c in Δ.coeffs], parent(Δ))
2017-06-04 20:30:34 +02:00
SOS_diff = EOI(Δ_int, λ_int) - SOS
eoi_SOS_L1_dist = norm(SOS_diff,1)
2017-03-13 14:49:55 +01:00
2017-04-01 15:21:57 +02:00
info(logger, "λ = (≈≥$(@sprintf("%.10f",float(λ))))")
2017-05-28 20:01:03 +02:00
ɛ_dist = GroupRings.augmentation(SOS_diff)
2017-04-01 15:21:57 +02:00
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)")
2017-06-04 20:30:34 +02:00
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L1_dist)")
2017-03-13 14:49:55 +01:00
2017-06-05 17:24:45 +02:00
distance_to_cone = λ - 2^(len-1)*eoi_SOS_L1_dist
2017-03-14 23:35:52 +01:00
return distance_to_cone
2017-03-13 14:49:55 +01:00
end
2017-06-04 20:28:45 +02:00
function distance_to_cone{T<:AbstractFloat}(λ::T, sqrt_matrix::Array{T,2}, Δ::GroupRingElem{T}; len=4)
2017-03-14 23:35:52 +01:00
SOS = compute_SOS(sqrt_matrix, Δ)
2017-04-01 15:21:57 +02:00
SOS_diff = EOI(Δ, λ) - SOS
2017-06-05 17:24:45 +02:00
eoi_SOS_L1_dist = norm(SOS_diff,1)
2017-03-14 23:35:52 +01:00
2017-04-01 15:21:57 +02:00
info(logger, "λ = ")
2017-05-28 20:01:03 +02:00
ɛ_dist = GroupRings.augmentation(SOS_diff)
2017-04-01 15:21:57 +02:00
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", ɛ_dist))")
2017-06-05 17:24:45 +02:00
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L1_dist))")
2017-06-05 17:24:45 +02:00
distance_to_cone = λ - 2^(len-1)*eoi_SOS_L1_dist
2017-03-14 23:35:52 +01:00
return distance_to_cone
end
2017-03-13 14:49:55 +01:00
function check_distance_to_positive_cone(Δ::GroupRingElem, λ, P;
2017-06-04 20:28:45 +02:00
tol=1e-7, rational=false, len=4)
2017-03-13 14:49:55 +01:00
2017-04-01 15:21:57 +02:00
isapprox(eigvals(P), abs(eigvals(P)), atol=tol) ||
2017-03-13 14:49:55 +01:00
warn("The solution matrix doesn't seem to be positive definite!")
2017-06-05 17:25:00 +02:00
# @assert P == Symmetric(P)
2017-04-01 15:21:57 +02:00
Q = real(sqrtm(P))
2017-03-14 23:35:52 +01:00
2017-03-15 17:56:01 +01:00
info(logger, "------------------------------------------------------------")
info(logger, "")
info(logger, "Checking in floating-point arithmetic...")
2017-06-04 20:28:45 +02:00
t = @timed fp_distance = distance_to_cone(λ, Q, Δ, len=len)
2017-03-15 20:13:53 +01:00
info(logger, timed_msg(t))
2017-03-16 10:07:35 +01:00
info(logger, "Floating point distance (to positive cone) ≈ $(@sprintf("%.10f", fp_distance))")
2017-03-15 17:56:01 +01:00
info(logger, "------------------------------------------------------------")
2017-03-13 14:49:55 +01:00
2017-04-17 15:22:33 +02:00
if fp_distance 0
2017-05-28 20:06:21 +02:00
return fp_distance
2017-04-17 15:22:33 +02:00
end
2017-06-05 17:29:22 +02:00
info(logger, "")
2017-04-01 15:21:57 +02:00
info(logger, "Projecting columns of rationalized Q to the augmentation ideal...")
δ = eps(λ)
Q_ = (Q, δ)
t = @timed Q_ω = correct_to_augmentation_ideal(Q_)
info(logger, timed_msg(t))
2017-04-01 15:21:57 +02:00
λ_ = (λ, δ)
2017-03-14 16:40:53 +01:00
Δ_ = (Δ, δ)
2017-03-13 14:49:55 +01:00
info(logger, "Checking in interval arithmetic")
2017-06-04 20:30:34 +02:00
Q_ω_int = Float64.(Q_ω) ± δ
2017-06-05 17:24:45 +02:00
t = @timed Interval_dist_to_ΣSq = distance_to_cone(λ_, Q_ω_int, Δ_, len=len)
2017-03-15 20:13:53 +01:00
info(logger, timed_msg(t))
2017-06-05 17:24:45 +02:00
info(logger, "The Augmentation-projected actual distance (to positive cone) ∈ $(Interval_dist_to_ΣSq)")
2017-03-15 17:56:01 +01:00
info(logger, "------------------------------------------------------------")
2017-03-13 14:49:55 +01:00
2017-06-05 17:24:45 +02:00
if Interval_dist_to_ΣSq.lo 0 || !rational
return Interval_dist_to_ΣSq
2017-03-13 14:49:55 +01:00
else
info(logger, "Checking Projected SOS decomposition in exact rational arithmetic...")
2017-06-05 17:24:45 +02:00
t = @timed _dist_to_ΣSq = distance_to_cone(λ_, Q_ω, Δ_, len=len)
2017-03-15 20:13:53 +01:00
info(logger, timed_msg(t))
2017-06-05 17:24:45 +02:00
@assert isa(_dist_to_ΣSq, Rational)
info(logger, "Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(_dist_to_ΣSq,8)))")
2017-03-15 17:56:01 +01:00
info(logger, "------------------------------------------------------------")
2017-06-05 17:24:45 +02:00
return _dist_to_ΣSq
2017-03-13 14:49:55 +01:00
end
end