1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-26 17:05:27 +01:00

oh boy, we need a lot of work to make unique work...

This commit is contained in:
kalmar 2017-01-18 17:51:58 +01:00
parent 4aa92cda36
commit 04e72bf17a
2 changed files with 48 additions and 8 deletions

View File

@ -2,7 +2,7 @@ module FreeGroups
export GSymbol, AutSymbol, Word, GWord, FGWord, AutWord, FGAutomorphism
import Base: length, ==, show, convert
import Base: length, ==, hash, show, convert
import Base: *, ^, convert
import Base: one, inv, reduce, push!, unshift!
@ -73,6 +73,36 @@ end
abstract Word
#=
@ScottPJones
If so, I'd recommend
1) making GWord a type, not an immutable
2) add fields
savedhash::UInt and
modified::Bool
3) make any function that modifies the contents of .symbols set the modified flag,
4) make the hash function
a) check that flag:
if false, return the savedhash field,
otherwise, call reduce!,
b) clear the modified flag, and
c) calculate a hash value simply by calling hash(symbols)
d) save that back into the savedhash field
5) for ==, I don't think you need to do all that checking for length or length == 0, that will already be handled by comparing the symbols vectors (possibly faster)
function (==){T}(W::GWord{T}, Z::GWord{T})
W.modified && reduce!(W) # reduce could actually clear the flag and recalculate the hash
Z.modified && reduce!(Z)
W.hash == Z.hash && W.symbols == Z.symbols
end
hash{T}(W::GWord{T}) = (W.modified && reduce!(W); W.hash)
(and last lines of reduce! would have W.modified = false ; W.hash = hash(W.symbols))
=#
immutable GWord{T<:GSymbol} <: Word
symbols::Vector{T}
end
@ -131,7 +161,17 @@ end
reduce(W::GWord) = reduce!(deepcopy(W))
(==)(W::GWord{FGSymbol}, Z::GWord{FGSymbol}) = reduce!(W).symbols == reduce!(Z).symbols
function (==){T}(W::GWord{T}, Z::GWord{T})
reduce!(W)
reduce!(Z)
if length(W) != length(Z)
return false
elseif length(W) == 0
return true
else
return W.symbols == Z.symbols
end
end
function show(io::IO, W::GWord)
if length(W) == 0

View File

@ -2,20 +2,20 @@ using JuMP
import Base: rationalize
using GroupAlgebras
function products{T<:Real}(S1::Array{Array{T,2},1}, S2::Array{Array{T,2},1})
result = [0*similar(S1[1])]
function products(S1, S2)
result = Vector{eltype(S1[1]*S2[1])}()
for x in S1
for y in S2
push!(result, x*y)
end
end
return unique(result[2:end])
return unique(result)
end
function generate_B₂_and_B₄(identity, S₁)
S₂ = unique(products(S₁, S₁));
S₃ = unique(products(S₁, S₂));
S₄ = unique(products(S₂, S₂));
S₂ = products(S₁, S₁);
S₃ = products(S₁, S₂);
S₄ = products(S₂, S₂);
B₂ = unique(vcat([identity],S₁,S₂));
B₄ = unique(vcat(B₂, S₃, S₄));