mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-19 15:25:29 +01:00
328 lines
8.5 KiB
Julia
328 lines
8.5 KiB
Julia
module FreeGroups
|
||
|
||
export GSymbol, AutSymbol, Word, GWord, FGWord, AutWord, FGAutomorphism
|
||
|
||
import Base: length, ==, hash, show, convert
|
||
import Base: *, ^, convert
|
||
import Base: one, inv, reduce, push!, unshift!
|
||
|
||
abstract GSymbol
|
||
|
||
immutable FGSymbol <: GSymbol
|
||
gen::String
|
||
pow::Int
|
||
end
|
||
|
||
immutable AutSymbol <: GSymbol
|
||
gen::String
|
||
pow::Int
|
||
ex::Expr
|
||
end
|
||
|
||
IDSymbol(::Type{FGSymbol}) = FGSymbol("(id)", 0)
|
||
IDSymbol(::Type{AutSymbol}) = AutSymbol("(id)", 0, :(IDAutomorphism(N)))
|
||
FGSymbol(x::String) = FGSymbol(x,1)
|
||
|
||
function show(io::IO, s::GSymbol)
|
||
if s.pow == 1
|
||
print(io, (s.gen))
|
||
elseif s.pow == 0
|
||
print(io, "(id)")
|
||
else
|
||
print(io, (s.gen)*"^$(s.pow)")
|
||
end
|
||
end
|
||
|
||
(==)(s::GSymbol, t::GSymbol) = s.gen == t.gen && s.pow == t.pow
|
||
length(s::GSymbol) = (s.pow == 0 ? 0 : 1)
|
||
|
||
one{T<:GSymbol}(::Type{T}) = IDSymbol(T)
|
||
one(s::GSymbol) = one(typeof(s))
|
||
inv(s::FGSymbol) = FGSymbol(s.gen, -s.pow)
|
||
|
||
convert(::Type{FGSymbol}, x::String) = FGSymbol(x)
|
||
|
||
reduce(s::GSymbol) = (s.pow == 0 ? one(s) : s)
|
||
change_pow(s::FGSymbol, n::Int) = reduce(FGSymbol(s.gen, n))
|
||
change_pow(s::AutSymbol, n::Int) = reduce(AutSymbol(s.gen, n, s.ex))
|
||
|
||
(^)(s::GSymbol, n::Integer) = change_pow(s, s.pow*n)
|
||
|
||
|
||
function inv(f::AutSymbol)
|
||
symbol = f.ex.args[1]
|
||
if symbol == :ɛ
|
||
return FreeGroups.change_pow(f, f.pow % 2)
|
||
elseif symbol == :σ
|
||
perm = invperm(f.ex.args[2])
|
||
gen = string('σ', [Char(8320 + i) for i in perm]...)
|
||
return AutSymbol(gen, f.pow, :(σ($perm)))
|
||
elseif symbol == :(ϱ) || symbol == :λ
|
||
return AutSymbol(f.gen, -f.pow, f.ex)
|
||
elseif symbol == :IDAutomorphism
|
||
return f
|
||
else
|
||
throw(ArgumentError("Don't know how to invert $f (of type $symbol)"))
|
||
end
|
||
end
|
||
|
||
function (*){T<:GSymbol}(s::T, t::T)
|
||
return GWord{T}([s])*t
|
||
end
|
||
|
||
|
||
abstract Word
|
||
|
||
#=
|
||
@ScottPJones
|
||
|
||
If so, I'd recommend
|
||
1) making GWord a type, not an immutable
|
||
2) add fields
|
||
savedhash::UInt and
|
||
modified::Bool
|
||
3) make any function that modifies the contents of .symbols set the modified flag,
|
||
4) make the hash function
|
||
a) check that flag:
|
||
if false, return the savedhash field,
|
||
otherwise, call reduce!,
|
||
b) clear the modified flag, and
|
||
c) calculate a hash value simply by calling hash(symbols)
|
||
d) save that back into the savedhash field
|
||
|
||
5) for ==, I don't think you need to do all that checking for length or length == 0, that will already be handled by comparing the symbols vectors (possibly faster)
|
||
|
||
function (==){T}(W::GWord{T}, Z::GWord{T})
|
||
W.modified && reduce!(W) # reduce could actually clear the flag and recalculate the hash
|
||
Z.modified && reduce!(Z)
|
||
W.hash == Z.hash && W.symbols == Z.symbols
|
||
end
|
||
|
||
hash{T}(W::GWord{T}) = (W.modified && reduce!(W); W.hash)
|
||
|
||
(and last lines of reduce! would have W.modified = false ; W.hash = hash(W.symbols))
|
||
=#
|
||
|
||
immutable GWord{T<:GSymbol} <: Word
|
||
symbols::Vector{T}
|
||
end
|
||
|
||
typealias FGWord GWord{FGSymbol}
|
||
typealias AutWord GWord{AutSymbol}
|
||
|
||
GWord{T<:GSymbol}(s::T) = GWord{T}([s])
|
||
FGWord(s::FGSymbol) = FGWord([s])
|
||
|
||
IDWord{T<:GSymbol}(::Type{T}) = GWord(one(T))
|
||
IDWord{T<:GSymbol}(W::GWord{T}) = IDWord(T)
|
||
|
||
function length(W::GWord)
|
||
return sum([abs(s.pow) for s in W.symbols])
|
||
end
|
||
|
||
one{T}(::Type{GWord{T}}) = IDWord(T)
|
||
one{T}(w::GWord{T}) = one(GWord{T})
|
||
|
||
function inv{T}(W::GWord{T})
|
||
if length(W) == 0
|
||
return W
|
||
else
|
||
return prod(reverse([inv(s) for s in W.symbols]))
|
||
end
|
||
end
|
||
|
||
function free_group_reduction!(W::GWord)
|
||
reduced = true
|
||
for i in 1:length(W.symbols) - 1
|
||
if W.symbols[i].gen == W.symbols[i+1].gen
|
||
reduced = false
|
||
p1 = W.symbols[i].pow
|
||
p2 = W.symbols[i+1].pow
|
||
W.symbols[i+1] = change_pow(W.symbols[i], p1 + p2)
|
||
W.symbols[i] = one(W.symbols[i])
|
||
end
|
||
end
|
||
return reduced
|
||
end
|
||
|
||
function reduce!{T}(W::GWord{T}, reduce_func::Function=free_group_reduction!)
|
||
if length(W) < 2
|
||
deleteat!(W.symbols, find(x -> x.pow == 0, W.symbols))
|
||
return W
|
||
end
|
||
|
||
reduced = false
|
||
while !reduced
|
||
reduced = reduce_func(W)
|
||
deleteat!(W.symbols, find(x -> x.pow == 0, W.symbols))
|
||
end
|
||
return W
|
||
end
|
||
|
||
reduce(W::GWord) = reduce!(deepcopy(W))
|
||
|
||
function (==){T}(W::GWord{T}, Z::GWord{T})
|
||
reduce!(W)
|
||
reduce!(Z)
|
||
if length(W) != length(Z)
|
||
return false
|
||
elseif length(W) == 0
|
||
return true
|
||
else
|
||
return W.symbols == Z.symbols
|
||
end
|
||
end
|
||
|
||
function show(io::IO, W::GWord)
|
||
if length(W) == 0
|
||
print(io, "(id)")
|
||
else
|
||
join(io, [string(s) for s in W.symbols], "*")
|
||
end
|
||
end
|
||
|
||
push!(W::GWord, x) = push!(W.symbols, x...)
|
||
unshift!(W::GWord, x) = unshift!(W.symbols, x...)
|
||
|
||
function r_multiply!(W::GWord, x; reduced::Bool=true)
|
||
if length(x) > 0
|
||
push!(W, x)
|
||
end
|
||
if reduced
|
||
reduce!(W)
|
||
end
|
||
return W
|
||
end
|
||
|
||
function l_multiply!(W::GWord, x; reduced::Bool=true)
|
||
if length(x) > 0
|
||
unshift!(W, reverse(x))
|
||
end
|
||
if reduced
|
||
reduce!(W)
|
||
end
|
||
return W
|
||
end
|
||
|
||
r_multiply(W::GWord, x; reduced::Bool=true) =
|
||
r_multiply!(deepcopy(W),x, reduced=reduced)
|
||
l_multiply(W::GWord, x; reduced::Bool=true) =
|
||
l_multiply!(deepcopy(W),x, reduced=reduced)
|
||
|
||
(*){T}(W::GWord{T}, Z::GWord{T}) = FreeGroups.r_multiply(W, Z.symbols)
|
||
(*)(W::GWord, s::GSymbol) = W*GWord(s)
|
||
(*)(s::GSymbol, W::GWord) = GWord(s)*W
|
||
|
||
function power_by_squaring{T}(x::GWord{T}, p::Integer)
|
||
if p < 0
|
||
return power_by_squaring(inv(x), -p)
|
||
elseif p == 0
|
||
return one(x)
|
||
elseif p == 1
|
||
return deepcopy(x)
|
||
elseif p == 2
|
||
return x*x
|
||
end
|
||
t = trailing_zeros(p) + 1
|
||
p >>= t
|
||
while (t -= 1) > 0
|
||
x *= x
|
||
end
|
||
y = x
|
||
while p > 0
|
||
t = trailing_zeros(p) + 1
|
||
p >>= t
|
||
while (t -= 1) >= 0
|
||
x *= x
|
||
end
|
||
y *= x
|
||
end
|
||
return reduce!(y)
|
||
end
|
||
|
||
(^)(x::GWord, n::Integer) = power_by_squaring(x,n)
|
||
|
||
|
||
|
||
type FGAutomorphism{T<:GSymbol}
|
||
domain::Vector{T}
|
||
image::Vector{GWord{T}}
|
||
map::Function
|
||
|
||
function FGAutomorphism{T}(domain::Vector{T}, image::Vector{GWord{T}}, map::Function)
|
||
length(domain) == length(unique(domain)) ||
|
||
throw(ArgumentError("The elements of $domain are not unique"))
|
||
length(domain) == length(image) ||
|
||
throw(ArgumentError("Dimensions of image and domain must match"))
|
||
# Set(vcat([[s.gen for s in reduce!(x).symbols]
|
||
# for x in image]...)) == Set(s.gen for s in domain) ||
|
||
# throw(ArgumentError("Are You sure that $image defines an automorphism??"))
|
||
new(domain, image, map)
|
||
end
|
||
end
|
||
|
||
function show(io::IO, X::FGAutomorphism)
|
||
title = "Endomorphism of Free Group on $(length(X.domain)) generators, sending"
|
||
map = ["$x ⟶ $y" for (x,y) in zip(X.domain, X.image)]
|
||
join(io, vcat(title,map), "\n")
|
||
end
|
||
|
||
(==)(f::FGAutomorphism, g::FGAutomorphism) =
|
||
f.domain == g.domain && f.image == g.image
|
||
|
||
function aut_func_from_table(table::Vector{Tuple{Int,Int}}, GroupIdentity=one(FGWord))
|
||
if length(table) == 0
|
||
# warn("The map is not an automorphism")
|
||
nothing
|
||
end
|
||
return v->reduce(*,GroupIdentity, v[idx]^power for (idx, power) in table)
|
||
end
|
||
|
||
function aut_func_from_word(domain, w::GWord)
|
||
table = Vector{Tuple{Int, Int}}()
|
||
for s in w.symbols
|
||
pair = (findfirst([x.gen for x in domain], s.gen), s.pow)
|
||
push!(table, pair)
|
||
end
|
||
return aut_func_from_table(table)
|
||
end
|
||
|
||
function FGMap(domain::Vector{FGSymbol}, image::Vector{GWord})
|
||
|
||
function_vector = Vector{Function}()
|
||
|
||
for word in image
|
||
push!(function_vector, aut_func_from_word(domain, word))
|
||
end
|
||
|
||
return v -> Vector{FGWord}([f(v) for f in function_vector])
|
||
end
|
||
|
||
FGAutomorphism(domain::Vector{FGSymbol}, image::Vector{GWord}) =
|
||
FGAutomorphism(domain, image, FGMap(domain, image))
|
||
|
||
FGAutomorphism(domain::Vector{FGSymbol}, image::Vector{FGSymbol}) =
|
||
FGAutomorphism(domain, Vector{GWord}(image))
|
||
|
||
function FGAutomorphism(domain::Vector, image::Vector)
|
||
FGAutomorphism(Vector{FGSymbol}(domain), Vector{GWord}(image))
|
||
end
|
||
|
||
function FGAutomorphism(domain, image)
|
||
FGAutomorphism([domain...], [image...])
|
||
end
|
||
|
||
"""Computes the composition g∘f of two morphisms"""
|
||
function compose(f::FGAutomorphism, g::FGAutomorphism)
|
||
if length(f.image) != length(g.domain)
|
||
throw(ArgumentError("Cannot compose $f and $g"))
|
||
else
|
||
h(v) = g.map(f.map(v))
|
||
return FGAutomorphism(f.domain, h(f.domain), h)
|
||
end
|
||
end
|
||
|
||
(*)(f::FGAutomorphism, g::FGAutomorphism) = compose(f,g)
|
||
|
||
end
|