mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2025-01-12 06:32:34 +01:00
Initial (working) code
This commit is contained in:
commit
39f0b86af2
114
GroupAlgebras.jl
Normal file
114
GroupAlgebras.jl
Normal file
@ -0,0 +1,114 @@
|
||||
module GroupAlgebras
|
||||
|
||||
import Base: convert, show, isequal, ==
|
||||
import Base: +, -, *, //
|
||||
import Base: size, length, norm
|
||||
|
||||
export GroupAlgebraElement
|
||||
|
||||
|
||||
immutable GroupAlgebraElement{T<:Number}
|
||||
coordinates::Vector{T}
|
||||
product_matrix::Array{Int,2}
|
||||
# basis::Array{Any,1}
|
||||
|
||||
function GroupAlgebraElement(coordinates::Vector{T},
|
||||
product_matrix::Array{Int,2})
|
||||
|
||||
length(coordinates) == size(product_matrix,1) ||
|
||||
throw(ArgumentError("Matrix has to represent products of basis
|
||||
elements"))
|
||||
size(product_matrix, 1) == size(product_matrix, 2) ||
|
||||
throw(ArgumentError("Product matrix has to be square"))
|
||||
# length(coordinates) == length(basis) || throw(ArgumentError("Coordinates must be given in the given basis"))
|
||||
# new(coordinates, product_matrix, basis)
|
||||
new(coordinates, product_matrix)
|
||||
end
|
||||
end
|
||||
|
||||
# GroupAlgebraElement(c,pm,b) = GroupAlgebraElement(c,pm)
|
||||
GroupAlgebraElement{T}(c::Vector{T},pm) = GroupAlgebraElement{T}(c,pm)
|
||||
|
||||
convert{T<:Number}(::Type{T}, X::GroupAlgebraElement) =
|
||||
GroupAlgebraElement(convert(Vector{T}, X.coordinates), X.product_matrix)
|
||||
|
||||
show{T}(io::IO, X::GroupAlgebraElement{T}) = print(io,
|
||||
"Element of Group Algebra over ", T, "\n", X.coordinates)
|
||||
|
||||
|
||||
function isequal{T, S}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{S})
|
||||
if T != S
|
||||
warn("Comparing elements with different coefficients Rings!")
|
||||
end
|
||||
X.product_matrix == Y.product_matrix || return false
|
||||
X.coordinates == Y.coordinates || return false
|
||||
return true
|
||||
end
|
||||
|
||||
(==)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = isequal(X,Y)
|
||||
|
||||
function add{T<:Number}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{T})
|
||||
X.product_matrix == Y.product_matrix || throw(DomainError(
|
||||
"Elements don't seem to belong to the same Group Algebra!"))
|
||||
return GroupAlgebraElement(X.coordinates+Y.coordinates, X.product_matrix)
|
||||
end
|
||||
|
||||
function add{T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
||||
Y::GroupAlgebraElement{S})
|
||||
warn("Adding elements with different base rings!")
|
||||
return GroupAlgebraElement(+(promote(X.coordinates, Y.coordinates)...),
|
||||
X.product_matrix)
|
||||
end
|
||||
|
||||
(+)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,Y)
|
||||
(-)(X::GroupAlgebraElement) = GroupAlgebraElement(-X.coordinates, X.product_matrix)
|
||||
(-)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,-Y)
|
||||
|
||||
function group_star_multiplication{T<:Number}(X::GroupAlgebraElement{T},
|
||||
Y::GroupAlgebraElement{T})
|
||||
X.product_matrix == Y.product_matrix || DomainError(
|
||||
"Elements don't seem to belong to the same Group Algebra!")
|
||||
|
||||
result = zeros(X.coordinates)
|
||||
for (i,x) in enumerate(X.coordinates), (j,y) in enumerate(Y.coordinates)
|
||||
index = X.product_matrix[i,j]
|
||||
if index != 0
|
||||
result[index]+= x*y
|
||||
end
|
||||
end
|
||||
return GroupAlgebraElement(result, X.product_matrix)
|
||||
end
|
||||
|
||||
function group_star_multiplication{T<:Number, S<:Number}(
|
||||
X::GroupAlgebraElement{T},
|
||||
Y::GroupAlgebraElement{S})
|
||||
S == T || warn("Multiplying elements with different base rings!")
|
||||
return group_star_multiplication(promote(X,Y)...)
|
||||
end
|
||||
|
||||
(*){T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
||||
Y::GroupAlgebraElement{S}) = group_star_multiplication(X,Y);
|
||||
|
||||
(*){T<:Number}(a::T, X::GroupAlgebraElement{T}) = GroupAlgebraElement(
|
||||
a*X.coordinates, X.product_matrix)
|
||||
|
||||
function scalar_multiplication{T<:Number, S<:Number}(a::T,
|
||||
X::GroupAlgebraElement{S})
|
||||
if T!=S
|
||||
warn("Scalars and coefficients ring are not the same! Trying to promote...")
|
||||
end
|
||||
return GroupAlgebraElement(a*X.coordinates, X.product_matrix)
|
||||
end
|
||||
(*){T<:Number}(a::T,X::GroupAlgebraElement) = scalar_multiplication(a, X)
|
||||
|
||||
//{T<:Rational, S<:Rational}(X::GroupAlgebraElement{T}, a::S) =
|
||||
GroupAlgebraElement(X.coordinates//a, X.product_matrix)
|
||||
|
||||
//{T<:Rational, S<:Integer}(X::GroupAlgebraElement{T}, a::S) =
|
||||
X//convert(T,a)
|
||||
|
||||
length(X::GroupAlgebraElement) = length(X.coordinates)
|
||||
size(X::GroupAlgebraElement) = size(X.coordinates)
|
||||
norm(X::GroupAlgebraElement, p=2) = norm(X.coordinates, p)
|
||||
|
||||
end
|
117
Matrix_Constraints.g
Normal file
117
Matrix_Constraints.g
Normal file
@ -0,0 +1,117 @@
|
||||
Symmetrise := function(elts)
|
||||
return Unique(Concatenation(elts, List(elts, Inverse)));
|
||||
end;
|
||||
|
||||
MYAllProducts := function(elts1, elts2)
|
||||
local products, elt;
|
||||
products := [];
|
||||
for elt in elts1 do
|
||||
products := Concatenation(products, elt*elts2);
|
||||
od;
|
||||
return products;
|
||||
end;
|
||||
|
||||
Products := function(elts, n)
|
||||
local products, i;
|
||||
if n<=0 then
|
||||
return [ ];
|
||||
elif n = 1 then
|
||||
return elts;
|
||||
else
|
||||
products := elts;
|
||||
for i in [2..n] do
|
||||
products := MYAllProducts(elts, products);
|
||||
od;
|
||||
return products;
|
||||
fi;
|
||||
end;
|
||||
|
||||
Laplacian := function(G, generating_set)
|
||||
local QG, emb, result, S, g, elt;
|
||||
QG := GroupRing(Rationals, G);;
|
||||
emb := Embedding(G,QG);;
|
||||
|
||||
S := generating_set;
|
||||
|
||||
result := Length(S)*One(QG);
|
||||
for g in S do
|
||||
result := result - g^emb;
|
||||
od;
|
||||
return result;
|
||||
end;
|
||||
|
||||
Vectorise := function(elt, basis)
|
||||
local result, l, i, g, coeff, axis;
|
||||
Assert(0, IsSupportedOn(basis, elt),
|
||||
"AssertionError: Element of interest is not supported on the basis!");
|
||||
result := List(0*[1..Length(basis)]);
|
||||
|
||||
l := CoefficientsAndMagmaElements(elt);
|
||||
for i in [1..Length(l)/2] do
|
||||
g := l[2*i-1];
|
||||
coeff := l[2*i];
|
||||
axis := Position(basis, g);
|
||||
result[axis] := result[axis] + coeff;
|
||||
od;
|
||||
return result;
|
||||
end;
|
||||
|
||||
Constraints := function(basis)
|
||||
local result, i, j, pos;
|
||||
result := [];
|
||||
for i in [1..Length(basis)] do
|
||||
Add(result,[]);
|
||||
od;
|
||||
for i in [1..Length(basis)] do
|
||||
for j in [1..Length(basis)] do
|
||||
pos := Position(basis, Inverse(basis[i])*basis[j]);
|
||||
if not pos = fail then
|
||||
Add(result[pos], [i,j]);
|
||||
fi;
|
||||
od;
|
||||
od;
|
||||
return result;
|
||||
end;
|
||||
|
||||
USupport := function(x)
|
||||
return Unique(Support(x));
|
||||
end;
|
||||
|
||||
IsSupportedOn := function(basis, elt)
|
||||
local elt_supp, x;
|
||||
elt_supp := USupport(elt);
|
||||
for x in elt_supp do
|
||||
if not x in basis then
|
||||
return x;
|
||||
fi;
|
||||
od;
|
||||
return true;
|
||||
end;
|
||||
|
||||
SDPGenerateAll := function(G, S, basis, name)
|
||||
local QG, emb, delta, delta_sq, delta_vec, delta_sq_vec, product_constr;
|
||||
QG := GroupRing(Rationals, G);;
|
||||
emb := Embedding(G,QG);;
|
||||
|
||||
delta := Laplacian(G, S);;
|
||||
delta_sq := delta^2;;
|
||||
if not IsSupportedOn(basis, delta_sq) then
|
||||
# Print("delta_sq is not supported on basis\n");
|
||||
return fail;
|
||||
else
|
||||
PrintTo(Concatenation("./basis.", name), basis);
|
||||
Print("Written basis to ", Concatenation("./basis.", name), "\n");
|
||||
delta_vec := Vectorise(delta, basis);;
|
||||
PrintTo(Concatenation("./delta.", name), delta_vec);
|
||||
Print("Written delta to ", Concatenation("./delta.", name), "\n");
|
||||
delta_sq_vec := Vectorise(delta_sq, basis);;
|
||||
PrintTo(Concatenation("./delta_sq.", name), delta_sq_vec);
|
||||
Print("Written delta_sq to ", Concatenation("./delta_sq.", name), "\n");
|
||||
|
||||
product_constr := Constraints(basis);;
|
||||
PrintTo(Concatenation("./constraints.", name), product_constr);
|
||||
Print("Written Matrix Constraints to ", Concatenation("./Constraints.", name), "\n");
|
||||
return "Done!";
|
||||
fi;
|
||||
|
||||
end;;
|
70
property(T).jl
Normal file
70
property(T).jl
Normal file
@ -0,0 +1,70 @@
|
||||
using JuMP
|
||||
|
||||
|
||||
function read_GAP_raw_list(filename::String)
|
||||
return eval(parse(String(read(filename))))
|
||||
end
|
||||
|
||||
function create_product_matrix(matrix_constraints)
|
||||
l = length(matrix_constraints)
|
||||
product_matrix = zeros(Int, (l, l))
|
||||
for (index, pairs) in enumerate(matrix_constraints)
|
||||
for (i,j) in pairs
|
||||
product_matrix[i,j] = index
|
||||
end
|
||||
end
|
||||
return product_matrix
|
||||
end
|
||||
|
||||
function create_sparse_product_matrix(matrix_constraints)
|
||||
row_indices = Int[]
|
||||
column_indices = Int[]
|
||||
values = Int[]
|
||||
for (index, pairs) in enumerate(matrix_constraints)
|
||||
for (i,j) in pairs
|
||||
push!(row_indices, i)
|
||||
push!(column_indices, j)
|
||||
push!(values, index)
|
||||
end
|
||||
end
|
||||
sparse_product_matrix = sparse(row_indices, column_indices, values)
|
||||
return sparse_product_matrix
|
||||
end
|
||||
|
||||
function create_SDP_problem(matrix_constraints,
|
||||
Δ²::GroupAlgebraElement, Δ::GroupAlgebraElement)
|
||||
N = length(Δ)
|
||||
@assert length(Δ) == length(Δ²)
|
||||
@assert length(Δ) == length(matrix_constraints)
|
||||
m = Model();
|
||||
@variable(m, A[1:N, 1:N], SDP)
|
||||
@SDconstraint(m, A >= zeros(size(A)))
|
||||
@variable(m, κ >= 0.0)
|
||||
@objective(m, Max, κ)
|
||||
|
||||
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coordinates, Δ.coordinates)
|
||||
@constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ)
|
||||
end
|
||||
return m
|
||||
end
|
||||
|
||||
function resulting_SOS{T<:Number, S<:Number}(sqrt_matrix::Array{T,2}, elt::GroupAlgebraElement{S})
|
||||
zzz = zeros(T, size(sqrt_matrix)[1])
|
||||
result::GroupAlgebraElement{T} = GroupAlgebraElement(zzz, elt.product_matrix)
|
||||
for i in 1:length(result)
|
||||
new_base = GroupAlgebraElement(sqrt_matrix[:,i], elt.product_matrix)
|
||||
result += new_base*new_base
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
|
||||
sqrt_corrected = similar(sqrt_matrix)
|
||||
l = size(sqrt_matrix,2)
|
||||
for i in 1:l
|
||||
col = view(sqrt_matrix,:,i)
|
||||
sqrt_corrected[:,i] = col - sum(col)//l
|
||||
# @assert sum(sqrt_corrected[:,i]) == 0
|
||||
end
|
||||
return sqrt_corrected
|
||||
end
|
Loading…
Reference in New Issue
Block a user