Merge branch 'master' into enh/julia-v0.6

This commit is contained in:
kalmarek 2017-11-15 20:28:57 +01:00
commit 498a6700ec
6 changed files with 291 additions and 358 deletions

View File

@ -3,8 +3,7 @@ import Base: rationalize
using IntervalArithmetic using IntervalArithmetic
IntervalArithmetic.setrounding(Interval, :tight) IntervalArithmetic.setrounding(Interval, :tight)
IntervalArithmetic.setformat(sigfigs=10) IntervalArithmetic.setformat(sigfigs=12)
IntervalArithmetic.setprecision(Interval, 53) # slightly faster than 256
import IntervalArithmetic import IntervalArithmetic
@ -15,131 +14,97 @@ end
(±)(X::GroupRingElem, tol::Real) = GroupRingElem(X.coeffs ± tol, parent(X)) (±)(X::GroupRingElem, tol::Real) = GroupRingElem(X.coeffs ± tol, parent(X))
function Base.rationalize{T<:Integer, S<:Real}(::Type{T},
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
r(x) = rationalize(T, x, tol=tol)
return r.(X)
end
(x, tol::Real) = rationalize(BigInt, x, tol=tol)
EOI{T<:Number}(Δ::GroupRingElem{T}, λ::T) = Δ*Δ - λ*Δ EOI{T<:Number}(Δ::GroupRingElem{T}, λ::T) = Δ*Δ - λ*Δ
function groupring_square(vect::AbstractVector, l, pm) function groupring_square(vect::AbstractVector, l, pm)
zzz = zeros(eltype(vect), l) zzz = zeros(eltype(vect), l)
zzz[1:length(vect)] .= vect return GroupRings.mul!(zzz, vect, vect, pm)
return GroupRings.mul!(similar(zzz), zzz, zzz, pm)
end end
function compute_SOS(sqrt_matrix, elt::GroupRingElem) function compute_SOS(Q::AbstractArray, pm::Array{Int,2}, l::Int)
n = size(sqrt_matrix,2)
l = length(elt.coeffs)
pm = parent(elt).pm
result = zeros(eltype(sqrt_matrix), l) # result = zeros(eltype(Q), l)
for i in 1:n # r = similar(result)
result .+= groupring_square(view(sqrt_matrix,:,i), l, pm) # for i in 1:size(Q,2)
end # print(" $i")
# result += GroupRings.mul!(r, view(Q,:,i), view(Q,:,i), pm)
# @everywhere groupring_square = PropertyT.groupring_square
#
# result = @parallel (+) for i in 1:n
# groupring_square(view(sqrt_matrix,:,i), length(elt.coeffs), parent(elt).pm)
# end # end
return GroupRingElem(result, parent(elt)) @everywhere groupring_square = PropertyT.groupring_square
result = @parallel (+) for i in 1:size(Q,2)
groupring_square(Q[:,i], l, pm)
end
println("")
return result
end end
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2}) function compute_SOS(Q::AbstractArray, RG::GroupRing, l::Int)
l = size(sqrt_matrix, 2) result = compute_SOS(Q, RG.pm, l)
sqrt_corrected = Array{Interval{Float64}}(l,l) return GroupRingElem(result, RG)
end
function distance_to_cone{T<:Interval}(elt::GroupRingElem, Q::AbstractArray{T,2}, wlen::Int)
SOS = compute_SOS(Q, parent(elt), length(elt.coeffs))
SOS_diff = elt - SOS
ɛ_dist = GroupRings.augmentation(SOS_diff)
info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)")
eoi_SOS_L1_dist = norm(SOS_diff,1)
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L1_dist)")
dist = 2^(wlen-1)*eoi_SOS_L1_dist
return dist
end
function distance_to_cone{T}(elt::GroupRingElem, Q::AbstractArray{T,2}, wlen::Int)
SOS = compute_SOS(Q, parent(elt), length(elt.coeffs))
SOS_diff = elt - SOS
ɛ_dist = GroupRings.augmentation(SOS_diff)
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", ɛ_dist))")
eoi_SOS_L1_dist = norm(SOS_diff,1)
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L1_dist))")
dist = 2^(wlen-1)*eoi_SOS_L1_dist
return dist
end
function augIdproj{T, I<:AbstractInterval}(S::Type{I}, Q::AbstractArray{T,2})
l = size(Q, 2)
R = zeros(S, (l,l))
Threads.@threads for j in 1:l Threads.@threads for j in 1:l
col = sum(view(sqrt_matrix, :,j))//l col = sum(view(Q, :,j))/l
for i in 1:l for i in 1:l
sqrt_corrected[i,j] = (Float64(sqrt_matrix[i,j]) - Float64(col)) ± eps(0.0) R[i,j] = Q[i,j] - col ± eps(0.0)
end end
end end
return sqrt_corrected return R
end end
function distance_to_cone{T<:Rational}(λ::T, sqrt_matrix::Array{T,2}, Δ::GroupRingElem{T}, wlen) function augIdproj{T}(Q::AbstractArray{T,2}, logger)
SOS = compute_SOS(sqrt_matrix, Δ) info(logger, "Projecting columns of Q to the augmentation ideal...")
@logtime logger Q = augIdproj(Interval{T}, Q)
SOS_diff = EOI(Δ, λ) - SOS
eoi_SOS_L1_dist = norm(SOS_diff,1)
info(logger, "λ = (≈$(@sprintf("%.10f", float(λ)))")
ɛ_dist = GroupRings.augmentation(SOS_diff)
if ɛ_dist 0//1
warn(logger, "The SOS is not in the augmentation ideal, numbers below are meaningless!")
end
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) = $ɛ_dist")
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ = $(@sprintf("%.10f", float(eoi_SOS_L1_dist)))")
distance_to_cone = λ - 2^(wlen-1)*eoi_SOS_L1_dist
return distance_to_cone
end
function distance_to_cone{T<:Rational, S<:Interval}(λ::T, sqrt_matrix::AbstractArray{S,2}, Δ::GroupRingElem{T}, wlen)
SOS = compute_SOS(sqrt_matrix, Δ)
info(logger, "ɛ(∑ξᵢ*ξᵢ) ∈ $(GroupRings.augmentation(SOS))")
λ_int = @interval(λ)
Δ_int = GroupRingElem([@interval(c) for c in Δ.coeffs], parent(Δ))
SOS_diff = EOI(Δ_int, λ_int) - SOS
eoi_SOS_L1_dist = norm(SOS_diff,1)
info(logger, "λ = (≈≥$(@sprintf("%.10f",float(λ))))")
ɛ_dist = GroupRings.augmentation(SOS_diff)
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ∈ $(ɛ_dist)")
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ∈ $(eoi_SOS_L1_dist)")
distance_to_cone = λ - 2^(wlen-1)*eoi_SOS_L1_dist
return distance_to_cone
end
function distance_to_cone(λ, sqrt_matrix::AbstractArray, Δ::GroupRingElem, wlen)
SOS = compute_SOS(sqrt_matrix, Δ)
SOS_diff = EOI(Δ, λ) - SOS
eoi_SOS_L1_dist = norm(SOS_diff,1)
info(logger, "λ = ")
ɛ_dist = GroupRings.augmentation(SOS_diff)
info(logger, "ɛ(Δ² - λΔ - ∑ξᵢ*ξᵢ) ≈ $(@sprintf("%.10f", ɛ_dist))")
info(logger, "‖Δ² - λΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $(@sprintf("%.10f", eoi_SOS_L1_dist))")
distance_to_cone = λ - 2^(wlen-1)*eoi_SOS_L1_dist
return distance_to_cone
end
function rationalize_and_project{T}(Q::AbstractArray{T}, δ::T, logger)
info(logger, "")
info(logger, "Rationalizing with accuracy ")
t = @timed Q_ = (Q, δ)
info(logger, timed_msg(t))
info(logger, "Projecting columns of the rationalized Q to the augmentation ideal...")
t = @timed Q_int = correct_to_augmentation_ideal(Q_)
info(logger, timed_msg(t))
info(logger, "Checking that sum of every column contains 0.0... ") info(logger, "Checking that sum of every column contains 0.0... ")
check = all([0.0 in sum(view(Q_int, :, i)) for i in 1:size(Q_int, 2)]) check = all([0.0 in sum(view(Q, :, i)) for i in 1:size(Q, 2)])
info(logger, (check? "They do." : "FAILED!")) info(logger, (check? "They do." : "FAILED!"))
@assert check @assert check
return Q_int return Q
end end
function check_distance_to_positive_cone(Δ::GroupRingElem, λ, Q, wlen; function distance_to_positive_cone(Δ::GroupRingElem, λ, Q, wlen::Int)
tol=1e-14, rational=false)
info(logger, "------------------------------------------------------------") info(logger, "------------------------------------------------------------")
info(logger, "") info(logger, "λ = ")
info(logger, "Checking in floating-point arithmetic...") info(logger, "Checking in floating-point arithmetic...")
t = @timed fp_distance = distance_to_cone(λ, Q, Δ, wlen) Δ²_λΔ = EOI(Δ, λ)
info(logger, timed_msg(t)) @logtime logger fp_distance = λ - distance_to_cone(Δ²_λΔ, Q, wlen)
info(logger, "Floating point distance (to positive cone) ≈ $(@sprintf("%.10f", fp_distance))") info(logger, "Floating point distance (to positive cone) ≈ $(@sprintf("%.10f", fp_distance))")
info(logger, "------------------------------------------------------------") info(logger, "------------------------------------------------------------")
@ -148,26 +113,16 @@ function check_distance_to_positive_cone(Δ::GroupRingElem, λ, Q, wlen;
end end
info(logger, "") info(logger, "")
Q_ω_int = rationalize_and_project(Q, tol, logger) Q = augIdproj(Q, logger)
λ_ = (λ, tol)
Δ_ = (Δ, tol)
info(logger, "Checking in interval arithmetic") info(logger, "Checking in interval arithmetic")
λ = @interval(λ)
Δ = GroupRingElem([@interval(c) for c in Δ.coeffs], parent(Δ))
Δ²_λΔ = EOI(Δ, λ)
t = @timed Interval_dist_to_ΣSq = distance_to_cone(λ_, Q_ω_int, Δ_, wlen) @logtime logger Interval_dist_to_ΣSq = λ - distance_to_cone(Δ²_λΔ, Q, wlen)
info(logger, timed_msg(t))
info(logger, "The Augmentation-projected actual distance (to positive cone) ∈ $(Interval_dist_to_ΣSq)") info(logger, "The Augmentation-projected actual distance (to positive cone) ∈ $(Interval_dist_to_ΣSq)")
info(logger, "------------------------------------------------------------") info(logger, "------------------------------------------------------------")
if Interval_dist_to_ΣSq.lo 0 || !rational return Interval_dist_to_ΣSq
return Interval_dist_to_ΣSq
else
info(logger, "Checking Projected SOS decomposition in exact rational arithmetic...")
t = @timed _dist_to_ΣSq = distance_to_cone(λ_, Q_ω, Δ_, wlen)
info(logger, timed_msg(t))
@assert isa(_dist_to_ΣSq, Rational)
info(logger, "Augmentation-projected rational distance (to positive cone) ≥ $(Float64(trunc(_dist_to_ΣSq,8)))")
info(logger, "------------------------------------------------------------")
return _dist_to_ΣSq
end
end end

View File

@ -8,44 +8,50 @@ immutable Settings
N::Int N::Int
G::Group G::Group
S::Vector S::Vector
AutS::Group autS::Group
radius::Int radius::Int
solver::SCSSolver solver::SCSSolver
upper_bound::Float64 upper_bound::Float64
tol::Float64 tol::Float64
end end
immutable OrbitData prefix(s::Settings) = s.name
suffix(s::Settings) = "$(s.upper_bound)"
prepath(s::Settings) = prefix(s)
fullpath(s::Settings) = joinpath(prefix(s), suffix(s))
immutable OrbitData{T<:AbstractArray{Float64, 2}, LapType <:AbstractVector{Float64}}
name::String name::String
Us::Vector Us::Vector{T}
Ps::Vector{Array{JuMP.Variable,2}} Ps::Vector{Array{JuMP.Variable,2}}
cnstr::Vector cnstr::Vector{SparseMatrixCSC{Float64, Int}}
laplacian::Vector laplacian::LapType
laplacianSq::Vector laplacianSq::LapType
dims::Vector{Int} dims::Vector{Int}
end end
function OrbitData(name::String) function OrbitData(sett::Settings)
splap = load(joinpath(name, "delta.jld"), "Δ"); splap = load(joinpath(prepath(sett), "delta.jld"), "Δ");
pm = load(joinpath(name, "pm.jld"), "pm"); pm = load(joinpath(prepath(sett), "pm.jld"), "pm");
cnstr = PropertyT.constraints_from_pm(pm); cnstr = PropertyT.constraints(pm);
splap² = similar(splap) splap² = similar(splap)
splap² = GroupRings.mul!(splap², splap, splap, pm); splap² = GroupRings.mul!(splap², splap, splap, pm);
# Uπs = load(joinpath(name, "U_pis.jld"), "Uπs"); # Uπs = load(joinpath(name, "U_pis.jld"), "Uπs");
Uπs = load(joinpath(name, "U_pis.jld"), "spUπs"); Uπs = load(joinpath(prepath(sett), "U_pis.jld"), "Uπs")
Uπs = sparsify!.(Uπs, sett.tol, check=true, verbose=true)
#dimensions of the corresponding πs: #dimensions of the corresponding πs:
dims = load(joinpath(name, "U_pis.jld"), "dims") dims = load(joinpath(prepath(sett), "U_pis.jld"), "dims")
m, P = init_model(Uπs); m, P = init_model(size(Uπs,1), [size(U,2) for U in Uπs]);
orbits = load(joinpath(name, "orbits.jld"), "orbits"); orbits = load(joinpath(prepath(sett), "orbits.jld"), "orbits");
n = size(Uπs[1],1) n = size(Uπs[1],1)
orb_spcnstrm = [orbit_constraint(cnstr[collect(orb)], n) for orb in orbits] orb_spcnstrm = [orbit_constraint(cnstr[collect(orb)], n) for orb in orbits]
orb_splap = orbit_spvector(splap, orbits) orb_splap = orbit_spvector(splap, orbits)
orb_splap² = orbit_spvector(splap², orbits) orb_splap² = orbit_spvector(splap², orbits)
orbData = OrbitData(name, Uπs, P, orb_spcnstrm, orb_splap, orb_splap², dims); orbData = OrbitData(fullpath(sett), Uπs, P, orb_spcnstrm, orb_splap, orb_splap², dims);
# orbData = OrbitData(name, Uπs, P, orb_spcnstrm, splap, splap², dims); # orbData = OrbitData(name, Uπs, P, orb_spcnstrm, splap, splap², dims);
@ -89,19 +95,19 @@ function sparsify!{T}(M::AbstractArray{T}, eps=eps(T); check=false, verbose=fals
info(logger, "Sparsified density:", rpad(densM, 20), "", rpad(dens(M),20)) info(logger, "Sparsified density:", rpad(densM, 20), "", rpad(dens(M),20))
end end
return M return sparse(M)
end end
sparsify{T}(U::AbstractArray{T}, tol=eps(T)) = sparsify!(deepcopy(U), tol) sparsify{T}(U::AbstractArray{T}, tol=eps(T); check=true, verbose=false) = sparsify!(deepcopy(U), tol, check=check, verbose=verbose)
function init_orbit_data(logger, sett::Settings; radius=2) function init_orbit_data(logger, sett::Settings; radius=2)
ex(fname) = isfile(joinpath(sett.name, fname)) ex(fname) = isfile(joinpath(prepath(sett), fname))
files_exists = ex.(["delta.jld", "pm.jld", "U_pis.jld", "orbits.jld"]) files_exists = ex.(["delta.jld", "pm.jld", "U_pis.jld", "orbits.jld", "preps.jld"])
if !all(files_exists) if !all(files_exists)
compute_orbit_data(logger, sett.name, sett.G, sett.S, sett.AutS, radius=radius) compute_orbit_data(logger, prepath(sett), sett.G, sett.S, sett.autS, radius=radius)
end end
return 0 return 0
@ -118,9 +124,9 @@ end
A(data::OrbitData, π, t) = data.dims[π].*transform(data.Us[π], data.cnstr[t]) A(data::OrbitData, π, t) = data.dims[π].*transform(data.Us[π], data.cnstr[t])
function constrLHS(m::JuMP.Model, data::OrbitData, t) function constrLHS(m::JuMP.Model, data::OrbitData, t)
l = endof(data.Us) l = endof(data.Us)
lhs = @expression(m, sum(vecdot(A(data, π, t), data.Ps[π]) for π in 1:l)) lhs = @expression(m, sum(vecdot(A(data, π, t), data.Ps[π]) for π in 1:l))
return lhs return lhs
end end
function constrLHS(m::JuMP.Model, cnstr, Us, Ust, dims, vars, eps=100*eps(1.0)) function constrLHS(m::JuMP.Model, cnstr, Us, Ust, dims, vars, eps=100*eps(1.0))
@ -154,36 +160,32 @@ function addconstraints!(m::JuMP.Model, data::OrbitData, l::Int=length(data.lapl
println("") println("")
end end
function init_model(Uπs) function init_model(n, sizes)
m = JuMP.Model(); m = JuMP.Model();
l = size(Uπs,1) P = Vector{Array{JuMP.Variable,2}}(n)
P = Vector{Array{JuMP.Variable,2}}(l)
for k in 1:l for (k,s) in enumerate(sizes)
s = size(Uπs[k],2) P[k] = JuMP.@variable(m, [i=1:s, j=1:s])
P[k] = JuMP.@variable(m, [i=1:s, j=1:s]) JuMP.@SDconstraint(m, P[k] >= 0.0)
JuMP.@SDconstraint(m, P[k] >= 0.0) end
end
JuMP.@variable(m, λ >= 0.0) JuMP.@variable(m, λ >= 0.0)
JuMP.@objective(m, Max, λ) JuMP.@objective(m, Max, λ)
return m, P return m, P
end end
function create_SDP_problem(name::String; upper_bound=Inf) function create_SDP_problem(sett::Settings)
info(logger, "Loading orbit data....") info(logger, "Loading orbit data....")
t = @timed SDP_problem, orb_data = OrbitData(name); @logtime logger SDP_problem, orb_data = OrbitData(sett);
info(logger, PropertyT.timed_msg(t))
if upper_bound < Inf if sett.upper_bound < Inf
λ = JuMP.getvariable(SDP_problem, ) λ = JuMP.getvariable(SDP_problem, )
JuMP.@constraint(SDP_problem, λ <= upper_bound) JuMP.@constraint(SDP_problem, λ <= sett.upper_bound)
end end
t = length(orb_data.laplacian) t = length(orb_data.laplacian)
info(logger, "Adding $t constraints ... ") info(logger, "Adding $t constraints ... ")
t = @timed addconstraints!(SDP_problem, orb_data) @logtime logger addconstraints!(SDP_problem, orb_data)
info(logger, PropertyT.timed_msg(t))
return SDP_problem, orb_data return SDP_problem, orb_data
end end
@ -201,28 +203,36 @@ function λandP(m::JuMP.Model, data::OrbitData, sett::Settings)
info(logger, "Reconstructing P...") info(logger, "Reconstructing P...")
t = @timed preps = perm_reps(sett.G, sett.S, sett.AutS, sett.radius) preps = load_preps(joinpath(prepath(sett), "preps.jld"), sett.autS)
info(logger, PropertyT.timed_msg(t))
t = @timed recP = reconstruct_sol(preps, data.Us, Ps, data.dims) @logtime logger recP = reconstruct_sol(preps, data.Us, Ps, data.dims)
info(logger, PropertyT.timed_msg(t))
fname = PropertyT.λSDPfilenames(data.name)[2] fname = PropertyT.λSDPfilenames(fullpath(sett))[2]
save(fname, "origP", Ps, "P", recP) save(fname, "origP", Ps, "P", recP)
return λ, recP return λ, recP
end end
function load_preps(fname::String, G::Nemo.Group)
lded_preps = load(fname, "perms_d")
permG = PermutationGroup(length(first(lded_preps)))
@assert length(lded_preps) == order(G)
return Dict(k=>permG(v) for (k,v) in zip(elements(G), lded_preps))
end
function save_preps(fname::String, preps)
autS = parent(first(keys(preps)))
JLD.save(fname, "perms_d", [preps[elt].d for elt in elements(autS)])
end
function check_property_T(sett::Settings) function check_property_T(sett::Settings)
init_orbit_data(logger, sett, radius=sett.radius) init_orbit_data(logger, sett, radius=sett.radius)
fnames = PropertyT.λSDPfilenames(sett.name) if all(isfile.(λSDPfilenames(fullpath(sett))))
λ, P = PropertyT.λandP(fullpath(sett))
if all(isfile.(fnames))
λ, P = PropertyT.λandP(sett.name)
else else
info(logger, "Creating SDP problem...") info(logger, "Creating SDP problem...")
SDP_problem, orb_data = create_SDP_problem(sett.name, upper_bound=sett.upper_bound) SDP_problem, orb_data = create_SDP_problem(sett)
JuMP.setsolver(SDP_problem, sett.solver) JuMP.setsolver(SDP_problem, sett.solver)
λ, P = λandP(SDP_problem, orb_data, sett) λ, P = λandP(SDP_problem, orb_data, sett)
@ -234,17 +244,16 @@ function check_property_T(sett::Settings)
info(logger, "minimum(P) = $(minimum(P))") info(logger, "minimum(P) = $(minimum(P))")
if λ > 0 if λ > 0
pm_fname = joinpath(sett.name, "pm.jld") pm_fname, Δ_fname = pmΔfilenames(prepath(sett))
RG = GroupRing(sett.G, load(pm_fname, "pm")) RG = GroupRing(sett.G, load(pm_fname, "pm"))
Δ_fname = joinpath(sett.name, "delta.jld")
Δ = GroupRingElem(load(Δ_fname, "Δ")[:, 1], RG) Δ = GroupRingElem(load(Δ_fname, "Δ")[:, 1], RG)
isapprox(eigvals(P), abs.(eigvals(P)), atol=sett.tol) || isapprox(eigvals(P), abs.(eigvals(P)), atol=sett.tol) ||
warn("The solution matrix doesn't seem to be positive definite!") warn("The solution matrix doesn't seem to be positive definite!")
# @assert P == Symmetric(P) # @assert P == Symmetric(P)
Q = real(sqrtm(Symmetric(P))) @logtime logger Q = real(sqrtm(Symmetric(P)))
sgap = PropertyT.check_distance_to_positive_cone(Δ, λ, Q, 2*sett.radius, tol=sett.tol, rational=false) sgap = distance_to_positive_cone(Δ, λ, Q, 2*sett.radius)
if isa(sgap, Interval) if isa(sgap, Interval)
sgap = sgap.lo sgap = sgap.lo
end end

View File

@ -10,7 +10,7 @@ mutable struct FFEltsIter{T<:Generic.FinField}
all::Int all::Int
field::T field::T
function FFEltsIter{T}(F::T) where {T} function FFEltsIter{T}(F::T) where {T}
return new(Int(characteristic(F)^degree(F)), F) return new(Int(characteristic(F)^degree(F)), F)
end end
end end
@ -79,89 +79,61 @@ function orbit_spvector(vect::AbstractVector, orbits)
return orb_vector return orb_vector
end end
function orbit_constraint(constraints::Vector{Vector{Vector{Int64}}}, n) function orbit_constraint(constraints::Vector{Vector{Tuple{Int,Int}}}, n)
result = spzeros(n,n) result = spzeros(n,n)
for cnstr in constraints for cnstr in constraints
for p in cnstr for p in cnstr
result[p[2], p[1]] += 1.0 result[p[2], p[1]] += 1.0/length(constraints)
end end
end end
return 1/length(constraints)*result return result
end end
############################################################################### ###############################################################################
# #
# Matrix- and C*-representations # Matrix-, Permutation- and C*-representations
# #
############################################################################### ###############################################################################
function matrix_repr(g::GroupElem, E, E_dict) function matrix_repr(p::perm)
rep_matrix = spzeros(Int, length(E), length(E)) N = parent(p).n
return sparse(1:N, p.d, [1.0 for _ in 1:N])
end
function matrix_reps{T<:GroupElem}(preps::Dict{T,perm})
kk = collect(keys(preps))
mreps = Vector{SparseMatrixCSC{Float64, Int}}(length(kk))
Threads.@threads for i in 1:length(kk)
mreps[i] = matrix_repr(preps[kk[i]])
end
return Dict(kk[i] => mreps[i] for i in 1:length(kk))
end
function perm_repr(g::GroupElem, E::Vector, E_dict)
p = Vector{Int}(length(E))
for (i,elt) in enumerate(E) for (i,elt) in enumerate(E)
j = E_dict[g(elt)] p[i] = E_dict[g(elt)]
rep_matrix[i,j] = 1
end end
return rep_matrix return p
end end
function matrix_reps{T<:GroupElem}(G::Group, S::Vector{T}, AutS::Group, radius::Int) function perm_reps(G::Group, E::Vector, E_rdict=GroupRings.reverse_dict(E))
Id = (isa(G, Nemo.Ring) ? one(G) : G())
E2, _ = Groups.generate_balls(S, Id, radius=radius)
Edict = GroupRings.reverse_dict(E2)
elts = collect(elements(AutS))
l = length(elts)
mreps = Vector{SparseMatrixCSC{Int, Int}}(l)
Threads.@threads for i in 1:l
mreps[i] = PropertyT.matrix_repr(elts[i], E2, Edict)
end
mreps_dict = Dict(elts[i]=>mreps[i] for i in 1:l)
return mreps_dict
end
function matrix_reps(G::Group, E2, E_dict)
elts = collect(elements(G)) elts = collect(elements(G))
l = length(elts) l = length(elts)
mreps = Vector{SparseMatrixCSC{Int, Int}}(l)
Threads.@threads for i in 1:l
mreps[i] = matrix_repr(elts[i], E2, E_dict)
end
return Dict(elts[i]=>mreps[i] for i in 1:l)
end
function perm_reps{T<:GroupElem}(G::Group, S::Vector{T}, AutS::Group, radius::Int)
Id = (isa(G, Nemo.Ring) ? one(G) : G())
E_R, _ = Groups.generate_balls(S, Id, radius=radius)
Edict = GroupRings.reverse_dict(E_R)
elts = collect(elements(AutS))
l = length(elts)
preps = Vector{Generic.perm}(l) preps = Vector{Generic.perm}(l)
G = Nemo.PermutationGroup(length(E_R)) permG = Nemo.PermutationGroup(length(E))
Threads.@threads for i in 1:l Threads.@threads for i in 1:l
preps[i] = G(perm_repr(elts[i], E_R, Edict)) preps[i] = permG(PropertyT.perm_repr(elts[i], E, E_rdict))
end end
preps_dict = Dict(elts[i]=>preps[i] for i in 1:l) return Dict(elts[i]=>preps[i] for i in 1:l)
return preps_dict
end end
function perm_repr(g::GroupElem, E, E_dict) function perm_reps(S::Vector, autS::Group, radius::Int)
l = length(E) E, _ = Groups.generate_balls(S, radius=radius)
p = Vector{Int}(l) return perm_reps(autS, E)
for (i,elt) in enumerate(E)
j = E_dict[g(elt)]
p[i] = j
end
return p
end end
function reconstruct_sol{T<:GroupElem}(preps::Dict{T, Generic.perm}, function reconstruct_sol{T<:GroupElem}(preps::Dict{T, Generic.perm},
@ -189,22 +161,17 @@ function reconstruct_sol{T<:GroupElem}(preps::Dict{T, Generic.perm},
end end
function Cstar_repr(x::GroupRingElem{T}, mreps::Dict) where {T} function Cstar_repr(x::GroupRingElem{T}, mreps::Dict) where {T}
nzindx = [i for i in eachindex(x.coeffs) if x[i] != zero(T)] return sum(x[i].*mreps[parent(x).basis[i]] for i in findn(x.coeffs))
RG = parent(x)
res = sum(Float64(x[i]).*mreps[RG.basis[i]] for i in nzindx)
return res
end end
function orthSVD(M::AbstractMatrix) function orthSVD{T}(M::AbstractMatrix{T})
M = full(M) M = full(M)
fact = svdfact(M) fact = svdfact(M)
singv = fact[:S] M_rank = sum(fact[:S] .> maximum(size(M))*eps(T))
M_rank = sum(singv .> maximum(size(M))*eps(eltype(singv))) return fact[:U][:,1:M_rank]
return fact[:U][:,1:M_rank]
end end
function compute_orbit_data{T<:GroupElem}(logger, name::String, G::Nemo.Group, S::Vector{T}, AutS; radius=2) function compute_orbit_data{T<:GroupElem}(logger, name::String, G::Nemo.Group, S::Vector{T}, autS::Nemo.Group; radius=2)
isdir(name) || mkdir(name) isdir(name) || mkdir(name)
info(logger, "Generating ball of radius $(2*radius)") info(logger, "Generating ball of radius $(2*radius)")
@ -212,44 +179,46 @@ function compute_orbit_data{T<:GroupElem}(logger, name::String, G::Nemo.Group, S
# TODO: Fix that by multiple dispatch? # TODO: Fix that by multiple dispatch?
Id = (isa(G, Nemo.Ring) ? one(G) : G()) Id = (isa(G, Nemo.Ring) ? one(G) : G())
@time E4, sizes = Groups.generate_balls(S, Id, radius=2*radius); @logtime logger E_2R, sizes = Groups.generate_balls(S, Id, radius=2*radius);
info(logger, "Balls of sizes $sizes.") info(logger, "Balls of sizes $sizes.")
info(logger, "Reverse dict") info(logger, "Reverse dict")
@time E_dict = GroupRings.reverse_dict(E4) @logtime logger E_rdict = GroupRings.reverse_dict(E_2R)
info(logger, "Product matrix") info(logger, "Product matrix")
@time pm = GroupRings.create_pm(E4, E_dict, sizes[radius], twisted=true) @logtime logger pm = GroupRings.create_pm(E_2R, E_rdict, sizes[radius], twisted=true)
RG = GroupRing(G, E4, E_dict, pm) RG = GroupRing(G, E_2R, E_rdict, pm)
Δ = PropertyT.splaplacian(RG, S) Δ = PropertyT.splaplacian(RG, S)
@assert GroupRings.augmentation(Δ) == 0 @assert GroupRings.augmentation(Δ) == 0
save(joinpath(name, "delta.jld"), "Δ", Δ.coeffs) save(joinpath(name, "delta.jld"), "Δ", Δ.coeffs)
save(joinpath(name, "pm.jld"), "pm", pm) save(joinpath(name, "pm.jld"), "pm", pm)
info(logger, "Decomposing E into orbits of $(AutS)") info(logger, "Decomposing E into orbits of $(autS)")
@time orbs = orbit_decomposition(AutS, E4, E_dict) @logtime logger orbs = orbit_decomposition(autS, E_2R, E_rdict)
@assert sum(length(o) for o in orbs) == length(E4) @assert sum(length(o) for o in orbs) == length(E_2R)
info(logger, "E consists of $(length(orbs)) orbits!")
save(joinpath(name, "orbits.jld"), "orbits", orbs) save(joinpath(name, "orbits.jld"), "orbits", orbs)
info(logger, "Action matrices") info(logger, "Action matrices")
@time AutS_mreps = matrix_reps(AutS, E4[1:sizes[radius]], E_dict) @logtime logger reps = perm_reps(autS, E_2R[1:sizes[radius]], E_rdict)
save_preps(joinpath(name, "preps.jld"), reps)
reps = matrix_reps(reps)
info(logger, "Projections") info(logger, "Projections")
@time AutS_mps = rankOne_projections(AutS); @logtime logger autS_mps = rankOne_projections(autS);
@time π_E_projections = [Cstar_repr(p, AutS_mreps) for p in AutS_mps] @logtime logger π_E_projections = [Cstar_repr(p, reps) for p in autS_mps]
info(logger, "Uπs...") info(logger, "Uπs...")
@time Uπs = orthSVD.(π_E_projections) @logtime logger Uπs = orthSVD.(π_E_projections)
multiplicities = size.(Uπs,2) multiplicities = size.(Uπs,2)
info(logger, "multiplicities = $multiplicities") info(logger, "multiplicities = $multiplicities")
dimensions = [Int(p[AutS()]*Int(order(AutS))) for p in AutS_mps]; dimensions = [Int(p[autS()]*Int(order(autS))) for p in autS_mps];
info(logger, "dimensions = $dimensions") info(logger, "dimensions = $dimensions")
@assert dot(multiplicities, dimensions) == sizes[radius] @assert dot(multiplicities, dimensions) == sizes[radius]
save(joinpath(name, "U_pis.jld"), save(joinpath(name, "U_pis.jld"),
"Uπs", Uπs, "Uπs", Uπs,
"spUπs", sparsify!.(deepcopy(Uπs), check=true, verbose=true),
"dims", dimensions) "dims", dimensions)
return 0 return 0
end end

View File

@ -4,7 +4,7 @@
# #
############################################################################### ###############################################################################
abstract type AbstractCharacter <: Function end abstract type AbstractCharacter end
struct PermCharacter <: AbstractCharacter struct PermCharacter <: AbstractCharacter
p::Generic.Partition p::Generic.Partition
@ -20,6 +20,8 @@ function (chi::PermCharacter)(g::Generic.perm)
return Int(Nemo.Generic.MN1inner(R, p, 1, Nemo.Generic._charvalsTable)) return Int(Nemo.Generic.MN1inner(R, p, 1, Nemo.Generic._charvalsTable))
end end
Nemo.isone(p::GroupElem) = p == parent(p)()
## NOTE: this works only for Z/2!!!! ## NOTE: this works only for Z/2!!!!
function (chi::DirectProdCharacter)(g::DirectProductGroupElem) function (chi::DirectProdCharacter)(g::DirectProductGroupElem)
return reduce(*, 1, ((-1)^isone(g.elts[j]) for j in 1:chi.i)) return reduce(*, 1, ((-1)^isone(g.elts[j]) for j in 1:chi.i))
@ -47,18 +49,17 @@ end
# #
############################################################################### ###############################################################################
function central_projection(RG::GroupRing, chi::AbstractCharacter, function central_projection(RG::GroupRing, chi::AbstractCharacter, T::Type=Rational{Int})
T::Type=Rational{Int}) result = RG(T)
result = RG(T) result.coeffs = full(result.coeffs)
result.coeffs = full(result.coeffs) dim = chi(RG.group())
dim = chi(RG.group()) ord = Int(order(RG.group))
ord = Int(order(RG.group))
for g in RG.basis for g in RG.basis
result[g] = convert(T, (dim//ord)*chi(g)) result[g] = convert(T, (dim//ord)*chi(g))
end end
return result return result
end end
function idempotents(RG::GroupRing{Generic.PermGroup}, T::Type=Rational{Int}) function idempotents(RG::GroupRing{Generic.PermGroup}, T::Type=Rational{Int})
@ -90,12 +91,10 @@ function idempotents(RG::GroupRing{Generic.PermGroup}, T::Type=Rational{Int})
return unique(idems) return unique(idems)
end end
function rankOne_projection(chi::PropertyT.PermCharacter, idems::Vector{S}) where {S<:GroupRingElem} function rankOne_projection(chi::PropertyT.PermCharacter, idems::Vector{T}) where {T<:GroupRingElem}
RG = parent(first(idems)) RG = parent(first(idems))
T = eltype(first(idems))
ids = [[one(RG, T)]; idems] ids = [[one(RG, T)]; idems]
for (i,j,k) in Base.product(ids, ids, ids) for (i,j,k) in Base.product(ids, ids, ids)
@ -112,7 +111,7 @@ function rankOne_projection(chi::PropertyT.PermCharacter, idems::Vector{S}) wher
throw("Couldn't find rank-one projection for $chi") throw("Couldn't find rank-one projection for $chi")
end end
function minimalprojections(G::Generic.PermGroup, T::Type=Rational{Int}) function rankOne_projections(G::Generic.PermGroup, T::Type=Rational{Int})
if G.n == 1 if G.n == 1
return [one(GroupRing(G), T)] return [one(GroupRing(G), T)]
elseif G.n < 8 elseif G.n < 8
@ -128,7 +127,7 @@ function minimalprojections(G::Generic.PermGroup, T::Type=Rational{Int})
chars = [PropertyT.PermCharacter(p) for p in parts] chars = [PropertyT.PermCharacter(p) for p in parts]
min_projs = Vector{eltype(RGidems)}(l) min_projs = Vector{eltype(RGidems)}(l)
Threads.@threads for i in 1:l for i in 1:l
chi = PropertyT.PermCharacter(parts[i]) chi = PropertyT.PermCharacter(parts[i])
min_projs[i] = rankOne_projection(chi,RGidems)*central_projection(RG,chi) min_projs[i] = rankOne_projection(chi,RGidems)*central_projection(RG,chi)
end end
@ -136,15 +135,11 @@ function minimalprojections(G::Generic.PermGroup, T::Type=Rational{Int})
return min_projs return min_projs
end end
function rankOne_projections(G::Generic.PermGroup, T::Type=Rational{Int})
return minimalprojections(G, T)
end
function rankOne_projections(BN::WreathProduct, T::Type=Rational{Int}) function rankOne_projections(BN::WreathProduct, T::Type=Rational{Int})
N = BN.P.n N = BN.P.n
# projections as elements of the group rings RSₙ # projections as elements of the group rings RSₙ
SNprojs_nc = [rankOne_projections(PermutationGroup(i), T) for i in 1:N] SNprojs_nc = [rankOne_projections(PermutationGroup(i)) for i in 1:N]
# embedding into group ring of BN # embedding into group ring of BN
RBN = GroupRing(BN) RBN = GroupRing(BN)
@ -163,7 +158,7 @@ function rankOne_projections(BN::WreathProduct, T::Type=Rational{Int})
last_emb = g->BN(Nemo.Generic.emb!(BN.P(), g, range[i+1:end])) last_emb = g->BN(Nemo.Generic.emb!(BN.P(), g, range[i+1:end]))
Sk_first = [RBN(p, first_emb) for p in SNprojs_nc[i]] Sk_first = [RBN(p, first_emb) for p in SNprojs_nc[i]]
Sk_last = [RBN(p, last_emb ) for p in SNprojs_nc[N-i]] Sk_last = [RBN(p, last_emb) for p in SNprojs_nc[N-i]]
append!(all_projs, append!(all_projs,
[Qs[i]*p1*p2 for (p1,p2) in Base.product(Sk_first,Sk_last)]) [Qs[i]*p1*p2 for (p1,p2) in Base.product(Sk_first,Sk_last)])
@ -187,18 +182,18 @@ doc"""
> forming 'products' by adding `op` (which is `*` by default). > forming 'products' by adding `op` (which is `*` by default).
""" """
function products{T<:GroupElem}(X::AbstractVector{T}, Y::AbstractVector{T}, op=*) function products{T<:GroupElem}(X::AbstractVector{T}, Y::AbstractVector{T}, op=*)
result = Vector{T}() result = Vector{T}()
seen = Set{T}() seen = Set{T}()
for x in X for x in X
for y in Y for y in Y
z = op(x,y) z = op(x,y)
if !in(z, seen) if !in(z, seen)
push!(seen, z) push!(seen, z)
push!(result, z) push!(result, z)
end end
end end
end end
return result return result
end end
doc""" doc"""

View File

@ -26,36 +26,69 @@ function setup_logging(name::String)
return logger return logger
end end
macro logtime(logger, ex)
quote
local stats = Base.gc_num()
local elapsedtime = Base.time_ns()
local val = $(esc(ex))
elapsedtime = Base.time_ns() - elapsedtime
local diff = Base.GC_Diff(Base.gc_num(), stats)
local ts = time_string(elapsedtime, diff.allocd, diff.total_time,
Base.gc_alloc_count(diff))
esc(info(logger, ts))
val
end
end
function time_string(elapsedtime, bytes, gctime, allocs)
str = @sprintf("%10.6f seconds", elapsedtime/1e9)
if bytes != 0 || allocs != 0
bytes, mb = Base.prettyprint_getunits(bytes, length(Base._mem_units), Int64(1024))
allocs, ma = Base.prettyprint_getunits(allocs, length(Base._cnt_units), Int64(1000))
if ma == 1
str*= @sprintf(" (%d%s allocation%s: ", allocs, Base._cnt_units[ma], allocs==1 ? "" : "s")
else
str*= @sprintf(" (%.2f%s allocations: ", allocs, Base._cnt_units[ma])
end
if mb == 1
str*= @sprintf("%d %s%s", bytes, Base._mem_units[mb], bytes==1 ? "" : "s")
else
str*= @sprintf("%.3f %s", bytes, Base._mem_units[mb])
end
if gctime > 0
str*= @sprintf(", %.2f%% gc time", 100*gctime/elapsedtime)
end
str*=")"
elseif gctime > 0
str*= @sprintf(", %.2f%% gc time", 100*gctime/elapsedtime)
end
return str
end
function exists(fname::String) function exists(fname::String)
return isfile(fname) || islink(fname) return isfile(fname) || islink(fname)
end end
function pmΔfilenames(name::String) function pmΔfilenames(prefix::String)
if !isdir(name) isdir(prefix) || mkdir(prefix)
mkdir(name) pm_filename = joinpath(prefix, "pm.jld")
end Δ_coeff_filename = joinpath(prefix, "delta.jld")
prefix = name return pm_filename, Δ_coeff_filename
pm_filename = joinpath(prefix, "pm.jld")
Δ_coeff_filename = joinpath(prefix, "delta.jld")
return pm_filename, Δ_coeff_filename
end end
function λSDPfilenames(name::String) function λSDPfilenames(prefix::String)
if !isdir(name) isdir(prefix) || mkdir(prefix)
mkdir(name) λ_filename = joinpath(prefix, "lambda.jld")
end SDP_filename = joinpath(prefix, "SDPmatrix.jld")
prefix = name return λ_filename, SDP_filename
λ_filename = joinpath(prefix, "lambda.jld")
SDP_filename = joinpath(prefix, "SDPmatrix.jld")
return λ_filename, SDP_filename
end end
function ΔandSDPconstraints(name::String, G::Group) function ΔandSDPconstraints(prefix::String, G::Group)
info(logger, "Loading precomputed pm, Δ, sdp_constraints...") info(logger, "Loading precomputed pm, Δ, sdp_constraints...")
pm_fname, Δ_fname = pmΔfilenames(name) pm_fname, Δ_fname = pmΔfilenames(prefix)
product_matrix = load(pm_fname, "pm") product_matrix = load(pm_fname, "pm")
sdp_constraints = constraints_from_pm(product_matrix) sdp_constraints = constraints(product_matrix)
RG = GroupRing(G, product_matrix) RG = GroupRing(G, product_matrix)
Δ = GroupRingElem(load(Δ_fname, "Δ")[:, 1], RG) Δ = GroupRingElem(load(Δ_fname, "Δ")[:, 1], RG)
@ -73,46 +106,21 @@ function ΔandSDPconstraints{T<:GroupElem}(name::String, S::Vector{T}, Id::T; ra
end end
function ΔandSDPconstraints{T<:GroupElem}(S::Vector{T}, Id::T; radius::Int=2) function ΔandSDPconstraints{T<:GroupElem}(S::Vector{T}, Id::T; radius::Int=2)
B, sizes = Groups.generate_balls(S, Id, radius=2*radius) info(logger, "Generating balls of sizes $sizes")
info(logger, "Generated balls of sizes $sizes") @logtime logger E_R, sizes = Groups.generate_balls(S, Id, radius=2*radius)
info(logger, "Creating product matrix...") info(logger, "Creating product matrix...")
t = @timed pm = GroupRings.create_pm(B, GroupRings.reverse_dict(B), sizes[radius]; twisted=true) @logtime logger pm = GroupRings.create_pm(E_R, GroupRings.reverse_dict(E_R), sizes[radius]; twisted=true)
info(logger, timed_msg(t))
info(logger, "Creating sdp_constratints...") info(logger, "Creating sdp_constratints...")
t = @timed sdp_constraints = PropertyT.constraints_from_pm(pm) @logtime logger sdp_constraints = PropertyT.constraints(pm)
info(logger, timed_msg(t))
RG = GroupRing(parent(Id), B, pm) RG = GroupRing(parent(Id), E_R, pm)
Δ = splaplacian(RG, S, Id) Δ = splaplacian(RG, S)
return Δ, sdp_constraints return Δ, sdp_constraints
end end
macro logtime(logger, ex)
quote
local stats = Base.gc_num()
local elapsedtime = Base.time_ns()
local val = $(esc(ex))
elapsedtime = Base.time_ns() - elapsedtime
local diff = Base.GC_Diff(Base.gc_num(), stats)
local ts = time_string(elapsedtime, diff.allocd, diff.total_time,
Base.gc_alloc_count(diff))
esc(warn($(esc(logger)), ts))
val
end
end
function timed_msg(t)
elapsed = t[2]
bytes_alloc = t[3]
gc_time = t[4]
gc_diff = t[5]
return "took: $elapsed s, allocated: $bytes_alloc bytes ($(gc_diff.poolalloc) allocations)."
end
function λandP(name::String) function λandP(name::String)
λ_fname, SDP_fname = λSDPfilenames(name) λ_fname, SDP_fname = λSDPfilenames(name)
f₁ = exists(λ_fname) f₁ = exists(λ_fname)
@ -148,7 +156,7 @@ function λandP(name::String, SDP_problem::JuMP.Model, varλ, varP)
save(λ_fname, "λ", λ) save(λ_fname, "λ", λ)
save(P_fname, "P", P) save(P_fname, "P", P)
else else
throw(ErrorException("Solver $solver did not produce a valid solution!: λ = ")) throw(ErrorException("Solver did not produce a valid solution!: λ = "))
end end
return λ, P return λ, P
@ -188,15 +196,10 @@ function check_property_T(name::String, S, Id, solver, upper_bound, tol, radius)
info(logger, "|R[G]|.pm = $(size(parent(Δ).pm))") info(logger, "|R[G]|.pm = $(size(parent(Δ).pm))")
if all(exists.(λSDPfilenames(name))) if all(exists.(λSDPfilenames(name)))
# cached
λ, P = λandP(name) λ, P = λandP(name)
else else
# compute
info(logger, "Creating SDP problem...") info(logger, "Creating SDP problem...")
SDP_problem, λ, P = create_SDP_problem(Δ, sdp_constraints, upper_bound=upper_bound)
t = @timed SDP_problem, λ, P = create_SDP_problem(Δ, sdp_constraints, upper_bound=upper_bound)
info(logger, timed_msg(t))
JuMP.setsolver(SDP_problem, solver) JuMP.setsolver(SDP_problem, solver)
λ, P = λandP(name, SDP_problem, λ, P) λ, P = λandP(name, SDP_problem, λ, P)
@ -208,13 +211,16 @@ function check_property_T(name::String, S, Id, solver, upper_bound, tol, radius)
info(logger, "minimum(P) = $(minimum(P))") info(logger, "minimum(P) = $(minimum(P))")
if λ > 0 if λ > 0
pm_fname, Δ_fname = pmΔfilenames(name)
RG = GroupRing(parent(first(S)), load(pm_fname, "pm"))
Δ = GroupRingElem(load(Δ_fname, "Δ")[:, 1], RG)
isapprox(eigvals(P), abs(eigvals(P)), atol=tol) || isapprox(eigvals(P), abs(eigvals(P)), atol=tol) ||
warn("The solution matrix doesn't seem to be positive definite!") warn("The solution matrix doesn't seem to be positive definite!")
# @assert P == Symmetric(P) # @assert P == Symmetric(P)
Q = real(sqrtm(Symmetric(P))) @logtime logger Q = real(sqrtm(Symmetric(P)))
sgap = check_distance_to_positive_cone(Δ, λ, Q, 2*radius, tol=tol) sgap = distance_to_positive_cone(Δ, λ, Q, 2*radius)
if isa(sgap, Interval) if isa(sgap, Interval)
sgap = sgap.lo sgap = sgap.lo
end end

View File

@ -1,30 +1,30 @@
using JuMP using JuMP
import MathProgBase: AbstractMathProgSolver import MathProgBase: AbstractMathProgSolver
function constraints_from_pm(pm, total_length=maximum(pm)) function constraints(pm, total_length=maximum(pm))
n = size(pm,1) n = size(pm,1)
constraints = [Array{Int,1}[] for x in 1:total_length] constraints = [Vector{Tuple{Int,Int}}() for _ in 1:total_length]
for j in 1:n for j in 1:n
for i in 1:n for i in 1:n
idx = pm[i,j] idx = pm[i,j]
push!(constraints[idx], [i,j]) push!(constraints[idx], (i,j))
end end
end end
return constraints return constraints
end end
function splaplacian{TT<:Group}(RG::GroupRing{TT}, S, Id=RG.group(), T::Type=Float64) function splaplacian(RG::GroupRing, S, T::Type=Float64)
result = RG(T) result = RG(T)
result[Id] = T(length(S)) result[RG.group()] = T(length(S))
for s in S for s in S
result[s] -= one(T) result[s] -= one(T)
end end
return result return result
end end
function splaplacian{TT<:Ring}(RG::GroupRing{TT}, S, Id=one(RG.group), T::Type=Float64) function splaplacian{TT<:Ring}(RG::GroupRing{TT}, S, T::Type=Float64)
result = RG(T) result = RG(T)
result[Id] = T(length(S)) result[one(RG.group)] = T(length(S))
for s in S for s in S
result[s] -= one(T) result[s] -= one(T)
end end
@ -61,8 +61,7 @@ function solve_SDP(SDP_problem)
o = redirect_stdout(solver_logger.handlers["solver_log"].io) o = redirect_stdout(solver_logger.handlers["solver_log"].io)
Base.Libc.flush_cstdio() Base.Libc.flush_cstdio()
t = @timed solution_status = JuMP.solve(SDP_problem) @logtime logger solution_status = JuMP.solve(SDP_problem)
info(logger, timed_msg(t))
Base.Libc.flush_cstdio() Base.Libc.flush_cstdio()
redirect_stdout(o) redirect_stdout(o)