mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-26 09:00:28 +01:00
cleanup Project.toml and fix imports
This commit is contained in:
parent
f00bfb7ca9
commit
633f065488
23
Project.toml
23
Project.toml
@ -4,23 +4,32 @@ authors = ["Marek Kaluba <kalmar@amu.edu.pl>"]
|
||||
version = "0.3.2"
|
||||
|
||||
[deps]
|
||||
Dates = "ade2ca70-3891-5945-98fb-dc099432e06a"
|
||||
Groups = "5d8bd718-bd84-11e8-3b40-ad14f4a32557"
|
||||
IntervalArithmetic = "d1acc4aa-44c8-5952-acd4-ba5d80a2a253"
|
||||
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
|
||||
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
||||
SCS = "c946c3f1-0d1f-5ce8-9dea-7daa1f7e2d13"
|
||||
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
|
||||
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
|
||||
SymbolicWedderburn = "858aa9a9-4c7c-4c62-b466-2421203962a2"
|
||||
|
||||
[compat]
|
||||
IntervalArithmetic = "^0.16.0"
|
||||
JuMP = "^0.20.0"
|
||||
SCS = "^0.7.0"
|
||||
julia = "^1.3.0"
|
||||
COSMO = "0.8"
|
||||
Groups = "0.7"
|
||||
IntervalArithmetic = "0.20"
|
||||
JuMP = "1.3"
|
||||
SCS = "1.1.0"
|
||||
StaticArrays = "1"
|
||||
SymbolicWedderburn = "0.3.1"
|
||||
julia = "1.6"
|
||||
|
||||
[extras]
|
||||
COSMO = "1e616198-aa4e-51ec-90a2-23f7fbd31d8d"
|
||||
Dates = "ade2ca70-3891-5945-98fb-dc099432e06a"
|
||||
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
|
||||
SCS = "c946c3f1-0d1f-5ce8-9dea-7daa1f7e2d13"
|
||||
Serialization = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
|
||||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
|
||||
[targets]
|
||||
test = ["Test", "SCS"]
|
||||
scripts = ["Dates", "Logging", "Serialization", "SCS", "COSMO"]
|
||||
test = ["Test", "SCS", "COSMO"]
|
||||
|
@ -3,14 +3,15 @@ module PropertyT
|
||||
|
||||
using LinearAlgebra
|
||||
using SparseArrays
|
||||
using Dates
|
||||
|
||||
using IntervalArithmetic
|
||||
using JuMP
|
||||
|
||||
using Groups
|
||||
using StarAlgebras
|
||||
import Groups.GroupsCore
|
||||
using SymbolicWedderburn
|
||||
import SymbolicWedderburn.StarAlgebras
|
||||
import SymbolicWedderburn.PermutationGroups
|
||||
|
||||
include("constraint_matrix.jl")
|
||||
include("sos_sdps.jl")
|
||||
|
@ -1,5 +1,5 @@
|
||||
import SymbolicWedderburn.action
|
||||
StarAlgebras.star(g::GroupElement) = inv(g)
|
||||
StarAlgebras.star(g::Groups.GroupElement) = inv(g)
|
||||
|
||||
include("alphabet_permutation.jl")
|
||||
|
||||
|
@ -1,7 +1,9 @@
|
||||
## action induced from permuting letters of an alphabet
|
||||
|
||||
import Groups: Constructions
|
||||
|
||||
struct AlphabetPermutation{GEl,I} <: SymbolicWedderburn.ByPermutations
|
||||
perms::Dict{GEl,Perm{I}}
|
||||
perms::Dict{GEl,PermutationGroups.Perm{I}}
|
||||
end
|
||||
|
||||
function AlphabetPermutation(
|
||||
@ -10,14 +12,14 @@ function AlphabetPermutation(
|
||||
op,
|
||||
)
|
||||
return AlphabetPermutation(
|
||||
Dict(γ => inv(Perm([A[op(l, γ)] for l in A])) for γ in Γ),
|
||||
Dict(γ => inv(PermutationGroups.Perm([A[op(l, γ)] for l in A])) for γ in Γ),
|
||||
)
|
||||
end
|
||||
|
||||
function AlphabetPermutation(A::Alphabet, W::Constructions.WreathProduct, op)
|
||||
return AlphabetPermutation(
|
||||
Dict(
|
||||
w => inv(Perm([A[op(op(l, w.p), w.n)] for l in A])) for
|
||||
w => inv(PermutationGroups.Perm([A[op(op(l, w.p), w.n)] for l in A])) for
|
||||
w in W
|
||||
),
|
||||
)
|
||||
@ -25,7 +27,7 @@ end
|
||||
|
||||
function SymbolicWedderburn.action(
|
||||
act::AlphabetPermutation,
|
||||
γ::GroupElement,
|
||||
γ::Groups.GroupElement,
|
||||
w::Groups.AbstractWord,
|
||||
)
|
||||
return w^(act.perms[γ])
|
||||
@ -33,7 +35,7 @@ end
|
||||
|
||||
function SymbolicWedderburn.action(
|
||||
act::AlphabetPermutation,
|
||||
γ::GroupElement,
|
||||
γ::Groups.GroupElement,
|
||||
g::Groups.AbstractFPGroupElement,
|
||||
)
|
||||
G = parent(g)
|
||||
|
@ -34,7 +34,7 @@ function _fma_SOS_thr!(
|
||||
return result
|
||||
end
|
||||
|
||||
function _cnstr_sos!(res::AlgebraElement, Q::AbstractMatrix, cnstrs)
|
||||
function _cnstr_sos!(res::StarAlgebras.AlgebraElement, Q::AbstractMatrix, cnstrs)
|
||||
StarAlgebras.zero!(res)
|
||||
Q² = Q' * Q
|
||||
for (g, A_g) in cnstrs
|
||||
@ -43,7 +43,7 @@ function _cnstr_sos!(res::AlgebraElement, Q::AbstractMatrix, cnstrs)
|
||||
return res
|
||||
end
|
||||
|
||||
function _augmented_sos!(res::AlgebraElement, Q::AbstractMatrix)
|
||||
function _augmented_sos!(res::StarAlgebras.AlgebraElement, Q::AbstractMatrix)
|
||||
A = parent(res)
|
||||
StarAlgebras.zero!(res)
|
||||
Q² = Q' * Q
|
||||
@ -64,10 +64,10 @@ function _augmented_sos!(res::AlgebraElement, Q::AbstractMatrix)
|
||||
return res
|
||||
end
|
||||
|
||||
function compute_sos(A::StarAlgebra, Q::AbstractMatrix; augmented::Bool)
|
||||
function compute_sos(A::StarAlgebras.StarAlgebra, Q::AbstractMatrix; augmented::Bool)
|
||||
if augmented
|
||||
z = zeros(eltype(Q), length(basis(A)))
|
||||
res = AlgebraElement(z, A)
|
||||
res = StarAlgebras.AlgebraElement(z, A)
|
||||
return _augmented_sos!(res, Q)
|
||||
cnstrs = constraints(basis(A), A.mstructure; augmented=true)
|
||||
return _cnstr_sos!(res, Q, cnstrs)
|
||||
@ -77,11 +77,11 @@ function compute_sos(A::StarAlgebra, Q::AbstractMatrix; augmented::Bool)
|
||||
|
||||
_fma_SOS_thr!(z, A.mstructure, Q)
|
||||
|
||||
return AlgebraElement(z, A)
|
||||
return StarAlgebras.AlgebraElement(z, A)
|
||||
end
|
||||
end
|
||||
|
||||
function sufficient_λ(residual::AlgebraElement, λ; halfradius)
|
||||
function sufficient_λ(residual::StarAlgebras.AlgebraElement, λ; halfradius)
|
||||
L1_norm = norm(residual, 1)
|
||||
suff_λ = λ - 2.0^(2ceil(log2(halfradius))) * L1_norm
|
||||
|
||||
@ -97,7 +97,7 @@ function sufficient_λ(residual::AlgebraElement, λ; halfradius)
|
||||
|
||||
info_strs = [
|
||||
"Numerical metrics of the obtained SOS:",
|
||||
"ɛ(elt - λu - ∑ξᵢ*ξᵢ) $eq_sign $(aug(residual))",
|
||||
"ɛ(elt - λu - ∑ξᵢ*ξᵢ) $eq_sign $(StarAlgebras.aug(residual))",
|
||||
"‖elt - λu - ∑ξᵢ*ξᵢ‖₁ $eq_sign $(L1_norm)",
|
||||
" λ $eq_sign $suff_λ",
|
||||
]
|
||||
@ -107,10 +107,10 @@ function sufficient_λ(residual::AlgebraElement, λ; halfradius)
|
||||
end
|
||||
|
||||
function sufficient_λ(
|
||||
elt::AlgebraElement,
|
||||
order_unit::AlgebraElement,
|
||||
elt::StarAlgebras.AlgebraElement,
|
||||
order_unit::StarAlgebras.AlgebraElement,
|
||||
λ,
|
||||
sos::AlgebraElement;
|
||||
sos::StarAlgebras.AlgebraElement;
|
||||
halfradius
|
||||
)
|
||||
|
||||
@ -121,15 +121,15 @@ function sufficient_λ(
|
||||
end
|
||||
|
||||
function certify_solution(
|
||||
elt::AlgebraElement,
|
||||
orderunit::AlgebraElement,
|
||||
elt::StarAlgebras.AlgebraElement,
|
||||
orderunit::StarAlgebras.AlgebraElement,
|
||||
λ,
|
||||
Q::AbstractMatrix{<:AbstractFloat};
|
||||
halfradius,
|
||||
augmented=iszero(aug(elt)) && iszero(aug(orderunit))
|
||||
augmented=iszero(StarAlgebras.aug(elt)) && iszero(StarAlgebras.aug(orderunit))
|
||||
)
|
||||
|
||||
should_we_augment = !augmented && aug(elt) == aug(orderunit) == 0
|
||||
should_we_augment = !augmented && StarAlgebras.aug(elt) == StarAlgebras.aug(orderunit) == 0
|
||||
|
||||
Q = should_we_augment ? augment_columns!(Q) : Q
|
||||
@time sos = compute_sos(parent(elt), Q, augmented=augmented)
|
||||
|
@ -46,7 +46,7 @@ function _groupby(keys::AbstractVector{K}, vals::AbstractVector{V}) where {K,V}
|
||||
return d
|
||||
end
|
||||
|
||||
function laplacians(RG::StarAlgebra, S, grading)
|
||||
function laplacians(RG::StarAlgebras.StarAlgebra, S, grading)
|
||||
d = _groupby(grading, S)
|
||||
Δs = Dict(α => RG(length(Sα)) - sum(RG(s) for s in Sα) for (α, Sα) in d)
|
||||
return Δs
|
||||
@ -61,7 +61,7 @@ function Adj(rootsystem::AbstractDict, subtype::Symbol)
|
||||
+,
|
||||
(
|
||||
Δα * Δβ for (α, Δα) in rootsystem for (β, Δβ) in rootsystem if
|
||||
PropertyT_new.Roots.classify_sub_root_system(
|
||||
Roots.classify_sub_root_system(
|
||||
roots,
|
||||
first(α),
|
||||
first(β),
|
||||
|
@ -5,8 +5,8 @@ Formulate the dual to the sum of squares decomposition problem for `X - λ·u`.
|
||||
See also [sos_problem_primal](@ref).
|
||||
"""
|
||||
function sos_problem_dual(
|
||||
elt::AlgebraElement,
|
||||
order_unit::AlgebraElement=zero(elt);
|
||||
elt::StarAlgebras.AlgebraElement,
|
||||
order_unit::StarAlgebras.AlgebraElement=zero(elt);
|
||||
lower_bound=-Inf
|
||||
)
|
||||
@assert parent(elt) == parent(order_unit)
|
||||
@ -70,7 +70,7 @@ function constraints(
|
||||
a, b = basis[i], basis[j]
|
||||
|
||||
push!(cnstrs[basis[one(a)]], k)
|
||||
push!(cnstrs[basis[star(a)]], -k)
|
||||
push!(cnstrs[basis[StarAlgebras.star(a)]], -k)
|
||||
push!(cnstrs[basis[b]], -k)
|
||||
end
|
||||
end
|
||||
@ -80,7 +80,7 @@ function constraints(
|
||||
)
|
||||
end
|
||||
|
||||
function constraints(A::StarAlgebra; augmented::Bool, twisted::Bool)
|
||||
function constraints(A::StarAlgebras.StarAlgebra; augmented::Bool, twisted::Bool)
|
||||
mstructure = if StarAlgebras._istwisted(A.mstructure) == twisted
|
||||
A.mstructure
|
||||
else
|
||||
@ -108,10 +108,10 @@ be added to the model. This may improve the accuracy of the solution if
|
||||
The default `u = zero(X)` formulates a simple feasibility problem.
|
||||
"""
|
||||
function sos_problem_primal(
|
||||
elt::AlgebraElement,
|
||||
order_unit::AlgebraElement=zero(elt);
|
||||
elt::StarAlgebras.AlgebraElement,
|
||||
order_unit::StarAlgebras.AlgebraElement=zero(elt);
|
||||
upper_bound=Inf,
|
||||
augmented::Bool=iszero(aug(elt)) && iszero(aug(order_unit))
|
||||
augmented::Bool=iszero(StarAlgebras.aug(elt)) && iszero(StarAlgebras.aug(order_unit))
|
||||
)
|
||||
@assert parent(elt) === parent(order_unit)
|
||||
|
||||
@ -168,22 +168,25 @@ function isorth_projection(ds::SymbolicWedderburn.DirectSummand)
|
||||
end
|
||||
|
||||
sos_problem_primal(
|
||||
elt::AlgebraElement,
|
||||
elt::StarAlgebras.AlgebraElement,
|
||||
wedderburn::WedderburnDecomposition;
|
||||
kwargs...
|
||||
) = sos_problem_primal(elt, zero(elt), wedderburn; kwargs...)
|
||||
|
||||
function sos_problem_primal(
|
||||
elt::AlgebraElement,
|
||||
orderunit::AlgebraElement,
|
||||
elt::StarAlgebras.AlgebraElement,
|
||||
orderunit::StarAlgebras.AlgebraElement,
|
||||
wedderburn::WedderburnDecomposition;
|
||||
upper_bound=Inf,
|
||||
augmented=iszero(aug(elt)) && iszero(aug(orderunit))
|
||||
augmented=iszero(StarAlgebras.aug(elt)) && iszero(StarAlgebras.aug(orderunit)),
|
||||
check_orthogonality=true
|
||||
)
|
||||
|
||||
@assert parent(elt) === parent(orderunit)
|
||||
if any(!isorth_projection, direct_summands(wedderburn))
|
||||
error("Wedderburn decomposition contains a non-orthogonal projection")
|
||||
if check_orthogonality
|
||||
if any(!isorth_projection, direct_summands(wedderburn))
|
||||
error("Wedderburn decomposition contains a non-orthogonal projection")
|
||||
end
|
||||
end
|
||||
|
||||
feasibility_problem = iszero(orderunit)
|
||||
@ -215,8 +218,8 @@ function sos_problem_primal(
|
||||
tmps = SymbolicWedderburn._tmps(wedderburn)
|
||||
end
|
||||
|
||||
X = convert(Vector{T}, coeffs(elt))
|
||||
U = convert(Vector{T}, coeffs(orderunit))
|
||||
X = convert(Vector{T}, StarAlgebras.coeffs(elt))
|
||||
U = convert(Vector{T}, StarAlgebras.coeffs(orderunit))
|
||||
|
||||
# defining constraints based on the multiplicative structure
|
||||
cnstrs = constraints(parent(elt), augmented=augmented, twisted=true)
|
||||
@ -278,7 +281,7 @@ function reconstruct!(
|
||||
if eltype(res) <: AbstractFloat
|
||||
SymbolicWedderburn.zerotol!(tmp2, atol=1e-12)
|
||||
end
|
||||
tmp2 .*= degree(ds)
|
||||
tmp2 .*= SymbolicWedderburn.degree(ds)
|
||||
|
||||
@assert size(tmp2) == size(res)
|
||||
|
||||
@ -291,7 +294,7 @@ function reconstruct!(
|
||||
end
|
||||
end
|
||||
end
|
||||
res ./= order(Int, G)
|
||||
res ./= Groups.order(Int, G)
|
||||
|
||||
return res
|
||||
end
|
||||
|
@ -1,4 +1,4 @@
|
||||
import PermutationGroups.AbstractPerm
|
||||
import SymbolicWedderburn.PermutationGroups.AbstractPerm
|
||||
|
||||
# move to Groups
|
||||
Base.keys(a::Alphabet) = keys(1:length(a))
|
||||
@ -15,7 +15,7 @@ isadjacent(σ::AbstractPerm, τ::AbstractPerm, i=1, j=2) =
|
||||
(j^σ == i^τ && i^σ ≠ j^τ) # second σ equal to first τ
|
||||
|
||||
function _ncycle(start, length, n=start + length - 1)
|
||||
p = Perm(Int8(n))
|
||||
p = PermutationGroups.Perm(Int8(n))
|
||||
@assert n ≥ start + length - 1
|
||||
for k in start:start+length-2
|
||||
p[k] = k + 1
|
||||
@ -24,7 +24,7 @@ function _ncycle(start, length, n=start + length - 1)
|
||||
return p
|
||||
end
|
||||
|
||||
alternating_group(n::Integer) = PermGroup([_ncycle(i, 3) for i in 1:n-2])
|
||||
alternating_group(n::Integer) = PermutationGroups.PermGroup([_ncycle(i, 3) for i in 1:n-2])
|
||||
|
||||
function small_gens(G::MatrixGroups.SpecialLinearGroup)
|
||||
A = alphabet(G)
|
||||
@ -46,13 +46,13 @@ function small_gens(G::Groups.AutomorphismGroup{<:FreeGroup})
|
||||
return union!(S, inv.(S))
|
||||
end
|
||||
|
||||
function small_laplacian(RG::StarAlgebra)
|
||||
function small_laplacian(RG::StarAlgebras.StarAlgebra)
|
||||
G = StarAlgebras.object(RG)
|
||||
S₂ = small_gens(G)
|
||||
return length(S₂) * one(RG) - sum(RG(s) for s in S₂)
|
||||
end
|
||||
|
||||
function SqAdjOp(A::StarAlgebra, n::Integer, Δ₂=small_laplacian(A))
|
||||
function SqAdjOp(A::StarAlgebras.StarAlgebra, n::Integer, Δ₂=small_laplacian(A))
|
||||
@assert parent(Δ₂) === A
|
||||
|
||||
alt_n = alternating_group(n)
|
||||
|
Loading…
Reference in New Issue
Block a user