mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-22 16:05:27 +01:00
remove old laplacians.jl, 1712.* 1812.*
This commit is contained in:
parent
0e5799862b
commit
f00bfb7ca9
@ -1,329 +0,0 @@
|
||||
###############################################################################
|
||||
# Settings and filenames
|
||||
|
||||
abstract type Settings end
|
||||
|
||||
struct Naive{El} <: Settings
|
||||
name::String
|
||||
G::Union{Group, NCRing}
|
||||
S::Vector{El}
|
||||
halfradius::Int
|
||||
upper_bound::Float64
|
||||
|
||||
solver::JuMP.OptimizerFactory
|
||||
force_compute::Bool
|
||||
end
|
||||
|
||||
struct Symmetrized{El} <: Settings
|
||||
name::String
|
||||
G::Union{Group, NCRing}
|
||||
S::Vector{El}
|
||||
autS::Group
|
||||
halfradius::Int
|
||||
upper_bound::Float64
|
||||
|
||||
solver::JuMP.OptimizerFactory
|
||||
force_compute::Bool
|
||||
end
|
||||
|
||||
function Settings(name::String,
|
||||
G::Union{Group, NCRing}, S::AbstractVector{El}, solver::JuMP.OptimizerFactory;
|
||||
halfradius=2, upper_bound=1.0, force_compute=false) where El <: Union{GroupElem, NCRingElem}
|
||||
return Naive(name, G, S, halfradius, upper_bound, solver, force_compute)
|
||||
end
|
||||
|
||||
function Settings(name::String,
|
||||
G::Union{Group, NCRing}, S::AbstractVector{El}, autS::Group, solver::JuMP.OptimizerFactory;
|
||||
halfradius=2, upper_bound=1.0, force_compute=false) where El <: Union{GroupElem, NCRingElem}
|
||||
return Symmetrized(name, G, S, autS, halfradius, upper_bound, solver, force_compute)
|
||||
end
|
||||
|
||||
suffix(s::Settings) = "$(s.upper_bound)"
|
||||
prepath(s::Settings) = s.name
|
||||
fullpath(s::Settings) = joinpath(prepath(s), suffix(s))
|
||||
|
||||
filename(sett::Settings, s::Symbol; kwargs...) = filename(sett, Val{s}; kwargs...)
|
||||
|
||||
filename(sett::Settings, ::Type{Val{:fulllog}}; kwargs...) =
|
||||
filename(fullpath(sett), "full", "log", suffix=Dates.now(); kwargs...)
|
||||
filename(sett::Settings, ::Type{Val{:solverlog}}; kwargs...) =
|
||||
filename(fullpath(sett), "solver", "log", suffix=Dates.now(); kwargs...)
|
||||
|
||||
filename(sett::Settings, ::Type{Val{:Δ}}; kwargs...) =
|
||||
filename(prepath(sett), "delta", "jld"; kwargs...)
|
||||
filename(sett::Settings, ::Type{Val{:BlockDecomposition}}; kwargs...) =
|
||||
filename(prepath(sett), "BlockDecomposition", "jld"; kwargs...)
|
||||
|
||||
filename(sett::Settings, ::Type{Val{:solution}}; kwargs...) =
|
||||
filename(fullpath(sett), "solution", "jld"; kwargs...)
|
||||
|
||||
function filename(sett::Settings, ::Type{Val{:warmstart}}; kwargs...)
|
||||
filename(fullpath(sett), "warmstart", "jld"; kwargs...)
|
||||
end
|
||||
|
||||
function filename(path::String, name, extension; prefix=nothing, suffix=nothing)
|
||||
pre = isnothing(prefix) ? "" : "$(prefix)_"
|
||||
suf = isnothing(suffix) ? "" : "_$(suffix)"
|
||||
return joinpath(path, "$pre$name$suf.$extension")
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
# Approximation by SOS (logged & warmstarted)
|
||||
|
||||
function warmstart(sett::Settings)
|
||||
warmstart_fname = filename(sett, :warmstart)
|
||||
try
|
||||
ws = load(warmstart_fname, "warmstart")
|
||||
@info "Loaded $warmstart_fname."
|
||||
return ws
|
||||
catch ex
|
||||
@warn "$(ex.msg). Could not provide a warmstart to the solver."
|
||||
return nothing
|
||||
end
|
||||
end
|
||||
|
||||
function approximate_by_SOS(sett::Naive,
|
||||
elt::GroupRingElem, orderunit::GroupRingElem;
|
||||
solverlog=tempname()*".log")
|
||||
|
||||
isdir(fullpath(sett)) || mkpath(fullpath(sett))
|
||||
|
||||
@info "Creating SDP problem..."
|
||||
SDP_problem = SOS_problem_primal(elt, orderunit, upper_bound=sett.upper_bound)
|
||||
@info Base.repr(SDP_problem)
|
||||
|
||||
@info "Logging solver's progress into $solverlog"
|
||||
|
||||
ws = warmstart(sett)
|
||||
@time status, ws = PropertyT.solve(solverlog, SDP_problem, sett.solver, ws)
|
||||
@info "Optimization finished:" status
|
||||
|
||||
P = value.(SDP_problem[:P])
|
||||
λ = value(SDP_problem[:λ])
|
||||
|
||||
if any(isnan, P)
|
||||
@warn "The solution seems to contain NaNs. Not overriding warmstart.jld"
|
||||
else
|
||||
save(filename(sett, :warmstart),
|
||||
"warmstart", (ws.primal, ws.dual, ws.slack),
|
||||
"P", P,
|
||||
"λ", λ)
|
||||
end
|
||||
|
||||
save(filename(sett, :warmstart, suffix=Dates.now()),
|
||||
"warmstart", (ws.primal, ws.dual, ws.slack),
|
||||
"P", P,
|
||||
"λ", λ)
|
||||
|
||||
return λ, P
|
||||
end
|
||||
|
||||
function approximate_by_SOS(sett::Symmetrized,
|
||||
elt::GroupRingElem, orderunit::GroupRingElem;
|
||||
solverlog=tempname()*".log")
|
||||
|
||||
isdir(fullpath(sett)) || mkpath(fullpath(sett))
|
||||
|
||||
orbit_data = try
|
||||
orbit_data = load(filename(sett, :BlockDecomposition), "BlockDecomposition")
|
||||
@info "Loaded orbit data."
|
||||
orbit_data
|
||||
catch ex
|
||||
@warn ex.msg
|
||||
GroupRings.hasbasis(parent(orderunit)) ||
|
||||
throw("You need to define basis of Group Ring to compute orbit decomposition!")
|
||||
@info "Computing orbit and Wedderburn decomposition..."
|
||||
orbit_data = BlockDecomposition(parent(orderunit), sett.autS)
|
||||
save(filename(sett, :BlockDecomposition), "BlockDecomposition", orbit_data)
|
||||
orbit_data
|
||||
end
|
||||
|
||||
orbit_data = decimate(orbit_data)
|
||||
|
||||
@info "Creating SDP problem..."
|
||||
SDP_problem, varP = SOS_problem_primal(elt, orderunit, orbit_data, upper_bound=sett.upper_bound)
|
||||
@info Base.repr(SDP_problem)
|
||||
|
||||
@info "Logging solver's progress into $solverlog"
|
||||
|
||||
ws = warmstart(sett)
|
||||
@time status, ws = PropertyT.solve(solverlog, SDP_problem, sett.solver, ws)
|
||||
@info "Optimization finished:" status
|
||||
|
||||
λ = value(SDP_problem[:λ])
|
||||
Ps = [value.(P) for P in varP]
|
||||
|
||||
if any(any(isnan, P) for P in Ps)
|
||||
@warn "The solution seems to contain NaNs. Not overriding warmstart.jld"
|
||||
else
|
||||
save(filename(sett, :warmstart),
|
||||
"warmstart", (ws.primal, ws.dual, ws.slack),
|
||||
"Ps", Ps,
|
||||
"λ", λ)
|
||||
end
|
||||
|
||||
save(filename(sett, :warmstart, suffix=Dates.now()),
|
||||
"warmstart", (ws.primal, ws.dual, ws.slack),
|
||||
"Ps", Ps,
|
||||
"λ", λ)
|
||||
|
||||
@info "Reconstructing P..."
|
||||
@time P = reconstruct(Ps, orbit_data)
|
||||
|
||||
return λ, P
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
# Checking solution
|
||||
|
||||
function certify_SOS_decomposition(elt::GroupRingElem, orderunit::GroupRingElem,
|
||||
λ::Number, Q::AbstractMatrix; R::Int=2)
|
||||
separator = "-"^76
|
||||
@info "$separator\nChecking in floating-point arithmetic..." λ
|
||||
eoi = elt - λ*orderunit
|
||||
|
||||
@info("Computing sum of squares decomposition...")
|
||||
@time residual = eoi - compute_SOS(parent(eoi), augIdproj(Q))
|
||||
|
||||
L1_norm = norm(residual,1)
|
||||
floatingpoint_λ = λ - 2.0^(2ceil(log2(R)))*L1_norm
|
||||
|
||||
info_strs = ["Numerical metrics of the obtained SOS:",
|
||||
"ɛ(elt - λu - ∑ξᵢ*ξᵢ) ≈ $(aug(residual))",
|
||||
"‖elt - λu - ∑ξᵢ*ξᵢ‖₁ ≈ $(L1_norm)",
|
||||
"Floating point (NOT certified) λ ≈"]
|
||||
@info join(info_strs, "\n") floatingpoint_λ
|
||||
|
||||
if floatingpoint_λ ≤ 0
|
||||
return floatingpoint_λ
|
||||
end
|
||||
|
||||
λ = @interval(λ)
|
||||
info_strs = [separator,
|
||||
"Checking in interval arithmetic...",
|
||||
"λ ∈ $λ"]
|
||||
@info(join(info_strs, "\n"))
|
||||
eoi = elt - λ*orderunit
|
||||
|
||||
@info("Projecting columns of Q to the augmentation ideal...")
|
||||
@time Q, check = augIdproj(Interval, Q)
|
||||
@info "Checking that sum of every column contains 0.0..." check_augmented=check
|
||||
check || @error("The following numbers are meaningless!")
|
||||
|
||||
@info("Computing sum of squares decomposition...")
|
||||
@time residual = eoi - compute_SOS(parent(eoi), Q)
|
||||
|
||||
L1_norm = norm(residual,1)
|
||||
certified_λ = λ - 2.0^(2ceil(log2(R)))*L1_norm
|
||||
|
||||
info_strs = ["Numerical metrics of the obtained SOS:",
|
||||
"ɛ(elt - λu - ∑ξᵢ*ξᵢ) ∈ $(aug(residual))",
|
||||
"‖elt - λu - ∑ξᵢ*ξᵢ‖₁ ∈ $(L1_norm)",
|
||||
"Interval aritmetic (certified) λ ∈"]
|
||||
@info join(info_strs, "\n") certified_λ
|
||||
|
||||
return certified_λ
|
||||
end
|
||||
|
||||
function spectral_gap(Δ::GroupRingElem, λ::Number, Q::AbstractMatrix; R::Int=2)
|
||||
@info "elt = Δ², u = Δ"
|
||||
return certify_SOS_decomposition(Δ^2, Δ, λ, Q, R=R)
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
# Interpreting the numerical results
|
||||
|
||||
Kazhdan_constant(λ::Number, N::Integer) = sqrt(2*λ/N)
|
||||
Kazhdan_constant(λ::Interval, N::Integer) = IntervalArithmetic.inf(sqrt(2*λ/N))
|
||||
|
||||
function check_property_T(sett::Settings)
|
||||
@info sett
|
||||
certified_sgap = spectral_gap(sett)
|
||||
return interpret_results(sett, certified_sgap)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, sett::Settings)
|
||||
info_strs = ["PropertyT Settings:",
|
||||
"Group: $(sett.name)",
|
||||
"Upper bound for λ: $(sett.upper_bound), on halfradius $(sett.halfradius).",
|
||||
"Force computations: $(sett.force_compute);",
|
||||
"Results will be stored in ./$(PropertyT.prepath(sett));",
|
||||
"Solver: $(typeof(sett.solver()))",
|
||||
"Solvers options: "]
|
||||
append!(info_strs, [rpad(" $k", 30)* "→ \t$v" for (k,v) in sett.solver().options])
|
||||
push!(info_strs, "="^76)
|
||||
print(io, join(info_strs, "\n"))
|
||||
end
|
||||
|
||||
function interpret_results(name::String, sgap::Number, N::Integer)
|
||||
if sgap > 0
|
||||
κ = Kazhdan_constant(sgap, N)
|
||||
@info "κ($name, S) ≥ $κ: Group HAS property (T)!"
|
||||
return true
|
||||
end
|
||||
info_strs = [
|
||||
"The certified lower bound on the spectral gap is negative:",
|
||||
"λ($name, S) ≥ 0.0 > $sgap",
|
||||
"This tells us nothing about property (T)",
|
||||
]
|
||||
@info join(info_strs, "\n")
|
||||
return false
|
||||
end
|
||||
|
||||
interpret_results(sett::Settings, sgap::Number) =
|
||||
interpret_results(sett.name, sgap, length(sett.S))
|
||||
|
||||
function spectral_gap(sett::Settings)
|
||||
fp = PropertyT.fullpath(sett)
|
||||
isdir(fp) || mkpath(fp)
|
||||
|
||||
Δ = try
|
||||
Δ = loadGRElem(filename(sett,:Δ), sett.G)
|
||||
@info "Loaded precomputed Δ."
|
||||
Δ
|
||||
catch ex
|
||||
@warn ex.msg
|
||||
@info "Computing Δ..."
|
||||
Δ = Laplacian(sett.S, sett.halfradius)
|
||||
saveGRElem(filename(sett, :Δ), Δ)
|
||||
Δ
|
||||
end
|
||||
|
||||
function compute(sett, Δ)
|
||||
@info "Computing λ and P..."
|
||||
λ, P = approximate_by_SOS(sett, Δ^2, Δ;
|
||||
solverlog=filename(sett, :solverlog))
|
||||
|
||||
save(filename(sett, :solution), "λ", λ, "P", P)
|
||||
|
||||
λ < 0 && @warn "Solver did not produce a valid solution!"
|
||||
return λ, P
|
||||
end
|
||||
|
||||
if sett.force_compute
|
||||
λ, P = compute(sett, Δ)
|
||||
else
|
||||
λ, P =try
|
||||
λ, P = load(filename(sett, :solution), "λ", "P")
|
||||
@info "Loaded existing λ and P."
|
||||
λ, P
|
||||
catch ex
|
||||
@warn ex.msg
|
||||
compute(sett, Δ)
|
||||
end
|
||||
end
|
||||
|
||||
info_strs = ["Numerical metrics of matrix solution:",
|
||||
"sum(P) = $(sum(P))",
|
||||
"maximum(P) = $(maximum(P))",
|
||||
"minimum(P) = $(minimum(P))"]
|
||||
@info join(info_strs, "\n")
|
||||
|
||||
isapprox(eigvals(P), abs.(eigvals(P))) ||
|
||||
@warn "The solution matrix doesn't seem to be positive definite!"
|
||||
|
||||
@time Q = real(sqrt(Symmetric( (P.+ P')./2 )))
|
||||
certified_sgap = spectral_gap(Δ, λ, Q, R=sett.halfradius)
|
||||
|
||||
return certified_sgap
|
||||
end
|
@ -1,26 +0,0 @@
|
||||
indexing(n) = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
||||
|
||||
function generating_set(G::AutGroup{N}, n=N) where N
|
||||
|
||||
rmuls = [Groups.transvection_R(i,j) for (i,j) in indexing(n)]
|
||||
lmuls = [Groups.transvection_L(i,j) for (i,j) in indexing(n)]
|
||||
gen_set = G.([rmuls; lmuls])
|
||||
|
||||
return [gen_set; inv.(gen_set)]
|
||||
end
|
||||
|
||||
function EltaryMat(M::MatAlgebra, i::Integer, j::Integer, val=1)
|
||||
@assert i ≠ j
|
||||
@assert 1 ≤ i ≤ nrows(M)
|
||||
@assert 1 ≤ j ≤ ncols(M)
|
||||
m = one(M)
|
||||
m[i,j] = val
|
||||
return m
|
||||
end
|
||||
|
||||
function generating_set(M::MatAlgebra, n=nrows(M))
|
||||
elts = [EltaryMat(M, i,j) for (i,j) in indexing(n)]
|
||||
return elem_type(M)[elts; inv.(elts)]
|
||||
end
|
||||
|
||||
include("sqadjop.jl")
|
@ -12,7 +12,6 @@ using Groups
|
||||
using StarAlgebras
|
||||
using SymbolicWedderburn
|
||||
|
||||
include("laplacians.jl")
|
||||
include("constraint_matrix.jl")
|
||||
include("sos_sdps.jl")
|
||||
include("certify.jl")
|
||||
|
@ -1,51 +0,0 @@
|
||||
###############################################################################
|
||||
#
|
||||
# Laplacians
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function spLaplacian(RG::GroupRing, S::AbstractVector, T::Type=Float64)
|
||||
result = RG(T)
|
||||
result[one(RG.group)] = T(length(S))
|
||||
for s in S
|
||||
result[s] -= one(T)
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
function Laplacian(S::AbstractVector{REl}, halfradius) where REl<:Union{NCRingElem, GroupElem}
|
||||
G = parent(first(S))
|
||||
@info "Generating metric ball of radius" radius=2halfradius
|
||||
@time E_R, sizes = Groups.wlmetric_ball(S, radius=2halfradius)
|
||||
@info "Generated balls:" sizes
|
||||
|
||||
@info "Creating product matrix..."
|
||||
rdict = GroupRings.reverse_dict(E_R)
|
||||
@time pm = GroupRings.create_pm(E_R, rdict, sizes[halfradius]; twisted=true)
|
||||
|
||||
RG = GroupRing(G, E_R, rdict, pm)
|
||||
Δ = spLaplacian(RG, S)
|
||||
return Δ
|
||||
end
|
||||
|
||||
function saveGRElem(fname::String, g::GroupRingElem)
|
||||
RG = parent(g)
|
||||
JLD.save(fname, "coeffs", g.coeffs, "pm", RG.pm, "G", RG.group)
|
||||
end
|
||||
|
||||
function loadGRElem(fname::String, RG::GroupRing)
|
||||
coeffs = load(fname, "coeffs")
|
||||
return GroupRingElem(coeffs, RG)
|
||||
end
|
||||
|
||||
function loadGRElem(fname::String, G::Union{Group, NCRing})
|
||||
pm = load(fname, "pm")
|
||||
RG = GroupRing(G, pm)
|
||||
return loadGRElem(fname, RG)
|
||||
end
|
||||
|
||||
function loadGRElem(fname::String)
|
||||
pm, G = load(fname, "pm", "G")
|
||||
RG = GroupRing(G, pm)
|
||||
return loadGRElem(fname, RG)
|
||||
end
|
Loading…
Reference in New Issue
Block a user