1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2025-01-13 06:47:32 +01:00

add tests for levels and their symmetrization

This commit is contained in:
Marek Kaluba 2023-05-22 22:46:22 +02:00
parent 66f10612de
commit a05a0798ec
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
2 changed files with 280 additions and 149 deletions

View File

@ -67,13 +67,3 @@ function Sq(rootsystem::AbstractDict)
init = zero(first(values(rootsystem))),
)
end
function level(rootsystem, level::Integer)
1 level 4 || throw("level is implemented only for i ∈{1,2,3,4}")
level == 1 && return Adj(rootsystem, :C₁) # always positive
level == 2 && return Adj(rootsystem, :A₁) +
Adj(rootsystem, Symbol("C₁×C₁")) +
Adj(rootsystem, :C₂) # C₂ is not positive
level == 3 && return Adj(rootsystem, :A₂) + Adj(rootsystem, Symbol("A₁×C₁"))
level == 4 && return Adj(rootsystem, Symbol("A₁×A₁")) # positive
end

View File

@ -8,160 +8,301 @@ function countmap(f, v)
return counts
end
@testset "classify_root_system" begin
α = PropertyT.Roots.Root([1, -1, 0])
β = PropertyT.Roots.Root([0, 1, -1])
γ = PropertyT.Roots.Root([2, 0, 0])
@testset "Chevalley" begin
@testset "classify_root_system" begin
α = PropertyT.Roots.Root([1, -1, 0])
β = PropertyT.Roots.Root([0, 1, -1])
γ = PropertyT.Roots.Root([2, 0, 0])
@test PropertyT.Roots.classify_root_system(α, β, (false, false)) == :A₂
@test PropertyT.Roots.classify_root_system(α, γ, (false, true)) == :C₂
@test PropertyT.Roots.classify_root_system(β, γ, (false, true)) ==
Symbol("A₁×C₁")
end
@testset "Exceptional root systems" begin
@testset "F4" begin
F4 = let Σ = PermutationGroups.PermGroup(perm"(1,2,3,4)", perm"(1,2)")
long = let x = (1, 1, 0, 0) .// 1
PropertyT.Roots.Root.(
union(
(x^g for g in Σ),
((x .* (-1, 1, 1, 1))^g for g in Σ),
((-1 .* x)^g for g in Σ),
),
)
end
short = let x = (1, 0, 0, 0) .// 1
PropertyT.Roots.Root.(
union((x^g for g in Σ), ((-1 .* x)^g for g in Σ))
)
end
signs = collect(Iterators.product(fill([-1, +1], 4)...))
halfs = let x = (1, 1, 1, 1) .// 2
PropertyT.Roots.Root.(union(x .* sgn for sgn in signs))
end
union(long, short, halfs)
end
@test length(F4) == 48
a = F4[1]
@test isapprox(PropertyT.Roots.₂length(a), sqrt(2))
b = F4[6]
@test isapprox(PropertyT.Roots.₂length(b), sqrt(2))
c = a + b
@test isapprox(PropertyT.Roots.₂length(c), 2.0)
@test PropertyT.Roots.classify_root_system(b, c, (false, true)) == :C₂
long = F4[findfirst(r -> PropertyT.Roots.₂length(r) == sqrt(2), F4)]
short = F4[findfirst(r -> PropertyT.Roots.₂length(r) == 1.0, F4)]
subtypes = Set([:C₂, :A₂, Symbol("A₁×C₁")])
let Ω = F4, α = long
counts = countmap([
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
])
@test Set(keys(counts)) == subtypes
d, r = divrem(counts[:C₂], 6)
@test r == 0 && d == 3
d, r = divrem(counts[:A₂], 4)
@test r == 0 && d == 4
end
let Ω = F4, α = short
counts = countmap([
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
])
@test Set(keys(counts)) == subtypes
d, r = divrem(counts[:C₂], 6)
@test r == 0 && d == 3
d, r = divrem(counts[:A₂], 4)
@test r == 0 && d == 4
end
@test PropertyT.Roots.classify_root_system(α, β, (false, false)) == :A₂
@test PropertyT.Roots.classify_root_system(α, γ, (false, true)) == :C₂
@test PropertyT.Roots.classify_root_system(β, γ, (false, true)) ==
Symbol("A₁×C₁")
end
@testset "E6-7-8 exceptional root systems" begin
E8 =
let Σ = PermutationGroups.PermGroup(
perm"(1,2,3,4,5,6,7,8)",
perm"(1,2)",
)
long = let x = (1, 1, 0, 0, 0, 0, 0, 0) .// 1
PropertyT.Roots.Root.(
union(
(x^g for g in Σ),
((x .* (-1, 1, 1, 1, 1, 1, 1, 1))^g for g in Σ),
((-1 .* x)^g for g in Σ),
),
@testset "Exceptional root systems" begin
@testset "F4" begin
F4 =
let Σ = PermutationGroups.PermGroup(
perm"(1,2,3,4)",
perm"(1,2)",
)
long = let x = (1, 1, 0, 0) .// 1
PropertyT.Roots.Root.(
union(
(x^g for g in Σ),
((x .* (-1, 1, 1, 1))^g for g in Σ),
((-1 .* x)^g for g in Σ),
),
)
end
short = let x = (1, 0, 0, 0) .// 1
PropertyT.Roots.Root.(
union((x^g for g in Σ), ((-1 .* x)^g for g in Σ))
)
end
signs = collect(Iterators.product(fill([-1, +1], 4)...))
halfs = let x = (1, 1, 1, 1) .// 2
PropertyT.Roots.Root.(union(x .* sgn for sgn in signs))
end
union(long, short, halfs)
end
signs = collect(
p for p in Iterators.product(fill([-1, +1], 8)...) if
iseven(count(==(-1), p))
@test length(F4) == 48
a = F4[1]
@test isapprox(PropertyT.Roots.₂length(a), sqrt(2))
b = F4[6]
@test isapprox(PropertyT.Roots.₂length(b), sqrt(2))
c = a + b
@test isapprox(PropertyT.Roots.₂length(c), 2.0)
@test PropertyT.Roots.classify_root_system(b, c, (false, true)) ==
:C₂
long =
F4[findfirst(r -> PropertyT.Roots.₂length(r) == sqrt(2), F4)]
short = F4[findfirst(r -> PropertyT.Roots.₂length(r) == 1.0, F4)]
subtypes = Set([:C₂, :A₂, Symbol("A₁×C₁")])
let Ω = F4, α = long
counts = countmap([
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
])
@test Set(keys(counts)) == subtypes
d, r = divrem(counts[:C₂], 6)
@test r == 0 && d == 3
d, r = divrem(counts[:A₂], 4)
@test r == 0 && d == 4
end
let Ω = F4, α = short
counts = countmap([
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
])
@test Set(keys(counts)) == subtypes
d, r = divrem(counts[:C₂], 6)
@test r == 0 && d == 3
d, r = divrem(counts[:A₂], 4)
@test r == 0 && d == 4
end
end
@testset "E6-7-8 exceptional root systems" begin
E8 =
let Σ = PermutationGroups.PermGroup(
perm"(1,2,3,4,5,6,7,8)",
perm"(1,2)",
)
long = let x = (1, 1, 0, 0, 0, 0, 0, 0) .// 1
PropertyT.Roots.Root.(
union(
(x^g for g in Σ),
((x .* (-1, 1, 1, 1, 1, 1, 1, 1))^g for g in Σ),
((-1 .* x)^g for g in Σ),
),
)
end
signs = collect(
p for
p in Iterators.product(fill([-1, +1], 8)...) if
iseven(count(==(-1), p))
)
halfs = let x = (1, 1, 1, 1, 1, 1, 1, 1) .// 2
rts = unique(
PropertyT.Roots.Root(x .* sgn) for sgn in signs
)
end
union(long, halfs)
end
subtypes = Set([:A₂, Symbol("A₁×A₁")])
@testset "E8" begin
@test length(E8) == 240
@test all(r -> PropertyT.Roots.₂length(r) sqrt(2), E8)
let Ω = E8, α = first(Ω)
counts = countmap([
PropertyT.Roots.classify_sub_root_system(Ω, α, γ)
for γ in Ω if !PropertyT.Roots.isproportional(α, γ)
])
@test Set(keys(counts)) == subtypes
d, r = divrem(counts[:A₂], 4)
@test r == 0 && d == 28
end
end
@testset "E7" begin
E7 = filter(r -> iszero(sum(r.coord)), E8)
@test length(E7) == 126
let Ω = E7, α = first(Ω)
counts = countmap([
PropertyT.Roots.classify_sub_root_system(Ω, α, γ)
for γ in Ω if !PropertyT.Roots.isproportional(α, γ)
])
@test Set(keys(counts)) == subtypes
d, r = divrem(counts[:A₂], 4)
@test r == 0 && d == 16
end
end
@testset "E6" begin
E6 = filter(
r -> r.coord[end] == r.coord[end-1] == r.coord[end-2],
E8,
)
halfs = let x = (1, 1, 1, 1, 1, 1, 1, 1) .// 2
rts = unique(PropertyT.Roots.Root(x .* sgn) for sgn in signs)
@test length(E6) == 72
let Ω = E6, α = first(Ω)
counts = countmap([
PropertyT.Roots.classify_sub_root_system(Ω, α, γ)
for γ in Ω if !PropertyT.Roots.isproportional(α, γ)
])
@test Set(keys(counts)) == subtypes
d, r = divrem(counts[:A₂], 4)
@info d, r
@test r == 0 && d == 10
end
union(long, halfs)
end
subtypes = Set([:A₂, Symbol("A₁×A₁")])
@testset "E8" begin
@test length(E8) == 240
@test all(r -> PropertyT.Roots.₂length(r) sqrt(2), E8)
let Ω = E8, α = first(Ω)
counts = countmap([
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
])
@test Set(keys(counts)) == subtypes
d, r = divrem(counts[:A₂], 4)
@test r == 0 && d == 28
end
end
@testset "E7" begin
E7 = filter(r -> iszero(sum(r.coord)), E8)
@test length(E7) == 126
end
let Ω = E7, α = first(Ω)
counts = countmap([
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
])
@test Set(keys(counts)) == subtypes
d, r = divrem(counts[:A₂], 4)
@test r == 0 && d == 16
end
@testset "Levels in Sp2n" begin
function level(rootsystem, level::Integer)
1 level 4 || throw("level is implemented only for i ∈{1,2,3,4}")
level == 1 && return PropertyT.Adj(rootsystem, :C₁) # always positive
level == 2 && return PropertyT.Adj(rootsystem, :A₁) +
PropertyT.Adj(rootsystem, Symbol("C₁×C₁")) +
PropertyT.Adj(rootsystem, :C₂) # C₂ is not positive
level == 3 && return PropertyT.Adj(rootsystem, :A₂) +
PropertyT.Adj(rootsystem, Symbol("A₁×C₁"))
level == 4 && return PropertyT.Adj(rootsystem, Symbol("A₁×A₁")) # positive
end
@testset "E6" begin
E6 = filter(
r -> r.coord[end] == r.coord[end-1] == r.coord[end-2],
E8,
n = 5
G = MatrixGroups.SymplecticGroup{2n}(Int8)
RG, S, sizes = PropertyT.group_algebra(G; halfradius = 1)
Weyl = let N = n
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
end
act = PropertyT.action_by_conjugation(G, Weyl)
function ^ᵃ(x, w::Groups.Constructions.WreathProductElement)
return SymbolicWedderburn.action(act, w, x)
end
Sₙ = S
Δsₙ = PropertyT.laplacians(
RG,
Sₙ,
x -> (gx = PropertyT.grading(x); Set([gx, -gx])),
)
function natural_embedding(i, Sp2m, Sp2n)
_dim(::MatrixGroups.ElementarySymplectic{N}) where {N} = N
n = _dim(first(alphabet(Sp2n))) ÷ 2
m = _dim(first(alphabet(Sp2m))) ÷ 2
l = alphabet(Sp2m)[i]
i, j = if l.symbol === :A
l.i, l.j
elseif l.symbol === :B
ifelse(l.i m, (l.i, l.j - m + n), (l.i - m + n, l.j))
else
throw("unknown type: $(l.symbol)")
end
image_of_l =
MatrixGroups.ElementarySymplectic{2n}(l.symbol, i, j, l.val)
return Groups.word_type(Sp2n)([alphabet(Sp2n)[image_of_l]])
end
@testset "Sp4 ↪ Sp12" begin
m = 2
Sₘ = let m = m, Sp2n = G
Sp2m = MatrixGroups.SymplecticGroup{2m}(Int8)
h = Groups.Homomorphism(
natural_embedding,
Sp2m,
Sp2n;
check = false,
)
S = h.(gens(Sp2m))
S = union!(S, inv.(S))
end
Δsₘ = PropertyT.laplacians(
RG,
Sₘ,
x -> (gx = PropertyT.grading(x); Set([gx, -gx])),
)
@test length(E6) == 72
let Ω = E6, α = first(Ω)
counts = countmap([
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
])
@test Set(keys(counts)) == subtypes
d, r = divrem(counts[:A₂], 4)
@info d, r
@test r == 0 && d == 10
function k(n, m, i)
return 2^n * factorial(m) * factorial(n - i) ÷ factorial(m - i)
end
@testset "Level $i" for i in 1:4
Levᵢᵐ = level(Δsₘ, i)
Levᵢⁿ = level(Δsₙ, i)
if 1 i 2
@test !iszero(Levᵢᵐ)
@time Σ_W_Levᵢᵐ = sum(Levᵢᵐ^ᵃw for w in Weyl)
@test isinteger(Σ_W_Levᵢᵐ[one(G)] / Levᵢⁿ[one(G)])
@test Σ_W_Levᵢᵐ[one(G)] / Levᵢⁿ[one(G)] == k(n, m, i)
@test Σ_W_Levᵢᵐ == k(n, m, i) * Levᵢⁿ
else
@test iszero(Levᵢᵐ)
@test !iszero(Levᵢⁿ)
end
end
end
@testset "Sp8 ↪ Sp12" begin
m = 4
Sₘ = let m = m, Sp2n = G
Sp2m = MatrixGroups.SymplecticGroup{2m}(Int8)
h = Groups.Homomorphism(
natural_embedding,
Sp2m,
Sp2n;
check = false,
)
S = h.(gens(Sp2m))
S = union!(S, inv.(S))
end
Δsₘ = PropertyT.laplacians(
RG,
Sₘ,
x -> (gx = PropertyT.grading(x); Set([gx, -gx])),
)
function k(n, m, i)
return 2^n * factorial(m) * factorial(n - i) ÷ factorial(m - i)
end
@testset "Level $i" for i in 1:4
Levᵢᵐ = level(Δsₘ, i)
Levᵢⁿ = level(Δsₙ, i)
@test !iszero(Levᵢᵐ)
@time Σ_W_Levᵢᵐ = sum(Levᵢᵐ^ᵃw for w in Weyl)
@test isinteger(Σ_W_Levᵢᵐ[one(G)] / Levᵢⁿ[one(G)])
@test Σ_W_Levᵢᵐ[one(G)] / Levᵢⁿ[one(G)] == k(n, m, i)
@test Σ_W_Levᵢᵐ == k(n, m, i) * Levᵢⁿ
end
end
end