mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-19 15:25:29 +01:00
310 lines
11 KiB
Julia
310 lines
11 KiB
Julia
countmap(v) = countmap(identity, v)
|
||
function countmap(f, v)
|
||
counts = Dict{eltype(f(first(v))),Int}()
|
||
for x in v
|
||
fx = f(x)
|
||
counts[fx] = get!(counts, fx, 0) + 1
|
||
end
|
||
return counts
|
||
end
|
||
|
||
@testset "Chevalley" begin
|
||
@testset "classify_root_system" begin
|
||
α = PropertyT.Roots.Root([1, -1, 0])
|
||
β = PropertyT.Roots.Root([0, 1, -1])
|
||
γ = PropertyT.Roots.Root([2, 0, 0])
|
||
|
||
@test PropertyT.Roots.classify_root_system(α, β, (false, false)) == :A₂
|
||
@test PropertyT.Roots.classify_root_system(α, γ, (false, true)) == :C₂
|
||
@test PropertyT.Roots.classify_root_system(β, γ, (false, true)) ==
|
||
Symbol("A₁×C₁")
|
||
end
|
||
|
||
@testset "Exceptional root systems" begin
|
||
@testset "F4" begin
|
||
F4 =
|
||
let Σ = PermutationGroups.PermGroup(
|
||
perm"(1,2,3,4)",
|
||
perm"(1,2)",
|
||
)
|
||
long = let x = (1, 1, 0, 0) .// 1
|
||
PropertyT.Roots.Root.(
|
||
union(
|
||
(x^g for g in Σ),
|
||
((x .* (-1, 1, 1, 1))^g for g in Σ),
|
||
((-1 .* x)^g for g in Σ),
|
||
),
|
||
)
|
||
end
|
||
|
||
short = let x = (1, 0, 0, 0) .// 1
|
||
PropertyT.Roots.Root.(
|
||
union((x^g for g in Σ), ((-1 .* x)^g for g in Σ))
|
||
)
|
||
end
|
||
|
||
signs = collect(Iterators.product(fill([-1, +1], 4)...))
|
||
halfs = let x = (1, 1, 1, 1) .// 2
|
||
PropertyT.Roots.Root.(union(x .* sgn for sgn in signs))
|
||
end
|
||
|
||
union(long, short, halfs)
|
||
end
|
||
|
||
@test length(F4) == 48
|
||
|
||
a = F4[1]
|
||
@test isapprox(PropertyT.Roots.ℓ₂length(a), sqrt(2))
|
||
b = F4[6]
|
||
@test isapprox(PropertyT.Roots.ℓ₂length(b), sqrt(2))
|
||
c = a + b
|
||
@test isapprox(PropertyT.Roots.ℓ₂length(c), 2.0)
|
||
@test PropertyT.Roots.classify_root_system(b, c, (false, true)) ==
|
||
:C₂
|
||
|
||
long =
|
||
F4[findfirst(r -> PropertyT.Roots.ℓ₂length(r) == sqrt(2), F4)]
|
||
short = F4[findfirst(r -> PropertyT.Roots.ℓ₂length(r) == 1.0, F4)]
|
||
|
||
subtypes = Set([:C₂, :A₂, Symbol("A₁×C₁")])
|
||
|
||
let Ω = F4, α = long
|
||
counts = countmap([
|
||
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
|
||
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
|
||
])
|
||
@test Set(keys(counts)) == subtypes
|
||
d, r = divrem(counts[:C₂], 6)
|
||
@test r == 0 && d == 3
|
||
|
||
d, r = divrem(counts[:A₂], 4)
|
||
@test r == 0 && d == 4
|
||
end
|
||
|
||
let Ω = F4, α = short
|
||
counts = countmap([
|
||
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for
|
||
γ in Ω if !PropertyT.Roots.isproportional(α, γ)
|
||
])
|
||
@test Set(keys(counts)) == subtypes
|
||
d, r = divrem(counts[:C₂], 6)
|
||
@test r == 0 && d == 3
|
||
|
||
d, r = divrem(counts[:A₂], 4)
|
||
@test r == 0 && d == 4
|
||
end
|
||
end
|
||
|
||
@testset "E6-7-8 exceptional root systems" begin
|
||
E8 =
|
||
let Σ = PermutationGroups.PermGroup(
|
||
perm"(1,2,3,4,5,6,7,8)",
|
||
perm"(1,2)",
|
||
)
|
||
long = let x = (1, 1, 0, 0, 0, 0, 0, 0) .// 1
|
||
PropertyT.Roots.Root.(
|
||
union(
|
||
(x^g for g in Σ),
|
||
((x .* (-1, 1, 1, 1, 1, 1, 1, 1))^g for g in Σ),
|
||
((-1 .* x)^g for g in Σ),
|
||
),
|
||
)
|
||
end
|
||
|
||
signs = collect(
|
||
p for
|
||
p in Iterators.product(fill([-1, +1], 8)...) if
|
||
iseven(count(==(-1), p))
|
||
)
|
||
halfs = let x = (1, 1, 1, 1, 1, 1, 1, 1) .// 2
|
||
rts = unique(
|
||
PropertyT.Roots.Root(x .* sgn) for sgn in signs
|
||
)
|
||
end
|
||
|
||
union(long, halfs)
|
||
end
|
||
|
||
subtypes = Set([:A₂, Symbol("A₁×A₁")])
|
||
|
||
@testset "E8" begin
|
||
@test length(E8) == 240
|
||
@test all(r -> PropertyT.Roots.ℓ₂length(r) ≈ sqrt(2), E8)
|
||
|
||
let Ω = E8, α = first(Ω)
|
||
counts = countmap([
|
||
PropertyT.Roots.classify_sub_root_system(Ω, α, γ)
|
||
for γ in Ω if !PropertyT.Roots.isproportional(α, γ)
|
||
])
|
||
@test Set(keys(counts)) == subtypes
|
||
d, r = divrem(counts[:A₂], 4)
|
||
@test r == 0 && d == 28
|
||
end
|
||
end
|
||
@testset "E7" begin
|
||
E7 = filter(r -> iszero(sum(r.coord)), E8)
|
||
@test length(E7) == 126
|
||
|
||
let Ω = E7, α = first(Ω)
|
||
counts = countmap([
|
||
PropertyT.Roots.classify_sub_root_system(Ω, α, γ)
|
||
for γ in Ω if !PropertyT.Roots.isproportional(α, γ)
|
||
])
|
||
@test Set(keys(counts)) == subtypes
|
||
d, r = divrem(counts[:A₂], 4)
|
||
@test r == 0 && d == 16
|
||
end
|
||
end
|
||
|
||
@testset "E6" begin
|
||
E6 = filter(
|
||
r -> r.coord[end] == r.coord[end-1] == r.coord[end-2],
|
||
E8,
|
||
)
|
||
@test length(E6) == 72
|
||
|
||
let Ω = E6, α = first(Ω)
|
||
counts = countmap([
|
||
PropertyT.Roots.classify_sub_root_system(Ω, α, γ)
|
||
for γ in Ω if !PropertyT.Roots.isproportional(α, γ)
|
||
])
|
||
@test Set(keys(counts)) == subtypes
|
||
d, r = divrem(counts[:A₂], 4)
|
||
@info d, r
|
||
@test r == 0 && d == 10
|
||
end
|
||
end
|
||
end
|
||
end
|
||
|
||
@testset "Levels in Sp2n" begin
|
||
function level(rootsystem, level::Integer)
|
||
1 ≤ level ≤ 4 || throw("level is implemented only for i ∈{1,2,3,4}")
|
||
level == 1 && return PropertyT.Adj(rootsystem, :C₁) # always positive
|
||
level == 2 && return PropertyT.Adj(rootsystem, :A₁) +
|
||
PropertyT.Adj(rootsystem, Symbol("C₁×C₁")) +
|
||
PropertyT.Adj(rootsystem, :C₂) # C₂ is not positive
|
||
level == 3 && return PropertyT.Adj(rootsystem, :A₂) +
|
||
PropertyT.Adj(rootsystem, Symbol("A₁×C₁"))
|
||
level == 4 && return PropertyT.Adj(rootsystem, Symbol("A₁×A₁")) # positive
|
||
end
|
||
|
||
n = 5
|
||
G = MatrixGroups.SymplecticGroup{2n}(Int8)
|
||
RG, S, sizes = PropertyT.group_algebra(G; halfradius = 1)
|
||
|
||
Weyl = let N = n
|
||
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
|
||
Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
|
||
end
|
||
act = PropertyT.action_by_conjugation(G, Weyl)
|
||
|
||
function ^ᵃ(x, w::Groups.Constructions.WreathProductElement)
|
||
return SymbolicWedderburn.action(act, w, x)
|
||
end
|
||
|
||
Sₙ = S
|
||
Δsₙ = PropertyT.laplacians(
|
||
RG,
|
||
Sₙ,
|
||
x -> (gx = PropertyT.grading(x); Set([gx, -gx])),
|
||
)
|
||
|
||
function natural_embedding(i, Sp2m, Sp2n)
|
||
_dim(::MatrixGroups.ElementarySymplectic{N}) where {N} = N
|
||
n = _dim(first(alphabet(Sp2n))) ÷ 2
|
||
m = _dim(first(alphabet(Sp2m))) ÷ 2
|
||
l = alphabet(Sp2m)[i]
|
||
i, j = if l.symbol === :A
|
||
l.i, l.j
|
||
elseif l.symbol === :B
|
||
ifelse(l.i ≤ m, (l.i, l.j - m + n), (l.i - m + n, l.j))
|
||
else
|
||
throw("unknown type: $(l.symbol)")
|
||
end
|
||
image_of_l =
|
||
MatrixGroups.ElementarySymplectic{2n}(l.symbol, i, j, l.val)
|
||
return Groups.word_type(Sp2n)([alphabet(Sp2n)[image_of_l]])
|
||
end
|
||
|
||
@testset "Sp4 ↪ Sp12" begin
|
||
m = 2
|
||
Sₘ = let m = m, Sp2n = G
|
||
Sp2m = MatrixGroups.SymplecticGroup{2m}(Int8)
|
||
h = Groups.Homomorphism(
|
||
natural_embedding,
|
||
Sp2m,
|
||
Sp2n;
|
||
check = false,
|
||
)
|
||
S = h.(gens(Sp2m))
|
||
S = union!(S, inv.(S))
|
||
end
|
||
|
||
Δsₘ = PropertyT.laplacians(
|
||
RG,
|
||
Sₘ,
|
||
x -> (gx = PropertyT.grading(x); Set([gx, -gx])),
|
||
)
|
||
|
||
function k(n, m, i)
|
||
return 2^n * factorial(m) * factorial(n - i) ÷ factorial(m - i)
|
||
end
|
||
|
||
@testset "Level $i" for i in 1:4
|
||
Levᵢᵐ = level(Δsₘ, i)
|
||
Levᵢⁿ = level(Δsₙ, i)
|
||
|
||
if 1 ≤ i ≤ 2
|
||
@test !iszero(Levᵢᵐ)
|
||
@time Σ_W_Levᵢᵐ = sum(Levᵢᵐ^ᵃw for w in Weyl)
|
||
|
||
@test isinteger(Σ_W_Levᵢᵐ[one(G)] / Levᵢⁿ[one(G)])
|
||
@test Σ_W_Levᵢᵐ[one(G)] / Levᵢⁿ[one(G)] == k(n, m, i)
|
||
@test Σ_W_Levᵢᵐ == k(n, m, i) * Levᵢⁿ
|
||
else
|
||
@test iszero(Levᵢᵐ)
|
||
@test !iszero(Levᵢⁿ)
|
||
end
|
||
end
|
||
end
|
||
|
||
@testset "Sp8 ↪ Sp12" begin
|
||
m = 4
|
||
Sₘ = let m = m, Sp2n = G
|
||
Sp2m = MatrixGroups.SymplecticGroup{2m}(Int8)
|
||
h = Groups.Homomorphism(
|
||
natural_embedding,
|
||
Sp2m,
|
||
Sp2n;
|
||
check = false,
|
||
)
|
||
S = h.(gens(Sp2m))
|
||
S = union!(S, inv.(S))
|
||
end
|
||
|
||
Δsₘ = PropertyT.laplacians(
|
||
RG,
|
||
Sₘ,
|
||
x -> (gx = PropertyT.grading(x); Set([gx, -gx])),
|
||
)
|
||
|
||
function k(n, m, i)
|
||
return 2^n * factorial(m) * factorial(n - i) ÷ factorial(m - i)
|
||
end
|
||
|
||
@testset "Level $i" for i in 1:4
|
||
Levᵢᵐ = level(Δsₘ, i)
|
||
Levᵢⁿ = level(Δsₙ, i)
|
||
|
||
@test !iszero(Levᵢᵐ)
|
||
@time Σ_W_Levᵢᵐ = sum(Levᵢᵐ^ᵃw for w in Weyl)
|
||
|
||
@test isinteger(Σ_W_Levᵢᵐ[one(G)] / Levᵢⁿ[one(G)])
|
||
@test Σ_W_Levᵢᵐ[one(G)] / Levᵢⁿ[one(G)] == k(n, m, i)
|
||
@test Σ_W_Levᵢᵐ == k(n, m, i) * Levᵢⁿ
|
||
end
|
||
end
|
||
end
|
||
end
|