1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 07:20:28 +01:00

add tests for levels and their symmetrization

This commit is contained in:
Marek Kaluba 2023-05-22 22:46:22 +02:00
parent 66f10612de
commit a05a0798ec
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
2 changed files with 280 additions and 149 deletions

View File

@ -67,13 +67,3 @@ function Sq(rootsystem::AbstractDict)
init = zero(first(values(rootsystem))), init = zero(first(values(rootsystem))),
) )
end end
function level(rootsystem, level::Integer)
1 level 4 || throw("level is implemented only for i ∈{1,2,3,4}")
level == 1 && return Adj(rootsystem, :C₁) # always positive
level == 2 && return Adj(rootsystem, :A₁) +
Adj(rootsystem, Symbol("C₁×C₁")) +
Adj(rootsystem, :C₂) # C₂ is not positive
level == 3 && return Adj(rootsystem, :A₂) + Adj(rootsystem, Symbol("A₁×C₁"))
level == 4 && return Adj(rootsystem, Symbol("A₁×A₁")) # positive
end

View File

@ -8,7 +8,8 @@ function countmap(f, v)
return counts return counts
end end
@testset "classify_root_system" begin @testset "Chevalley" begin
@testset "classify_root_system" begin
α = PropertyT.Roots.Root([1, -1, 0]) α = PropertyT.Roots.Root([1, -1, 0])
β = PropertyT.Roots.Root([0, 1, -1]) β = PropertyT.Roots.Root([0, 1, -1])
γ = PropertyT.Roots.Root([2, 0, 0]) γ = PropertyT.Roots.Root([2, 0, 0])
@ -17,11 +18,15 @@ end
@test PropertyT.Roots.classify_root_system(α, γ, (false, true)) == :C₂ @test PropertyT.Roots.classify_root_system(α, γ, (false, true)) == :C₂
@test PropertyT.Roots.classify_root_system(β, γ, (false, true)) == @test PropertyT.Roots.classify_root_system(β, γ, (false, true)) ==
Symbol("A₁×C₁") Symbol("A₁×C₁")
end end
@testset "Exceptional root systems" begin @testset "Exceptional root systems" begin
@testset "F4" begin @testset "F4" begin
F4 = let Σ = PermutationGroups.PermGroup(perm"(1,2,3,4)", perm"(1,2)") F4 =
let Σ = PermutationGroups.PermGroup(
perm"(1,2,3,4)",
perm"(1,2)",
)
long = let x = (1, 1, 0, 0) .// 1 long = let x = (1, 1, 0, 0) .// 1
PropertyT.Roots.Root.( PropertyT.Roots.Root.(
union( union(
@ -54,9 +59,11 @@ end
@test isapprox(PropertyT.Roots.₂length(b), sqrt(2)) @test isapprox(PropertyT.Roots.₂length(b), sqrt(2))
c = a + b c = a + b
@test isapprox(PropertyT.Roots.₂length(c), 2.0) @test isapprox(PropertyT.Roots.₂length(c), 2.0)
@test PropertyT.Roots.classify_root_system(b, c, (false, true)) == :C₂ @test PropertyT.Roots.classify_root_system(b, c, (false, true)) ==
:C₂
long = F4[findfirst(r -> PropertyT.Roots.₂length(r) == sqrt(2), F4)] long =
F4[findfirst(r -> PropertyT.Roots.₂length(r) == sqrt(2), F4)]
short = F4[findfirst(r -> PropertyT.Roots.₂length(r) == 1.0, F4)] short = F4[findfirst(r -> PropertyT.Roots.₂length(r) == 1.0, F4)]
subtypes = Set([:C₂, :A₂, Symbol("A₁×C₁")]) subtypes = Set([:C₂, :A₂, Symbol("A₁×C₁")])
@ -105,11 +112,14 @@ end
end end
signs = collect( signs = collect(
p for p in Iterators.product(fill([-1, +1], 8)...) if p for
p in Iterators.product(fill([-1, +1], 8)...) if
iseven(count(==(-1), p)) iseven(count(==(-1), p))
) )
halfs = let x = (1, 1, 1, 1, 1, 1, 1, 1) .// 2 halfs = let x = (1, 1, 1, 1, 1, 1, 1, 1) .// 2
rts = unique(PropertyT.Roots.Root(x .* sgn) for sgn in signs) rts = unique(
PropertyT.Roots.Root(x .* sgn) for sgn in signs
)
end end
union(long, halfs) union(long, halfs)
@ -123,8 +133,8 @@ end
let Ω = E8, α = first(Ω) let Ω = E8, α = first(Ω)
counts = countmap([ counts = countmap([
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for PropertyT.Roots.classify_sub_root_system(Ω, α, γ)
γ in Ω if !PropertyT.Roots.isproportional(α, γ) for γ in Ω if !PropertyT.Roots.isproportional(α, γ)
]) ])
@test Set(keys(counts)) == subtypes @test Set(keys(counts)) == subtypes
d, r = divrem(counts[:A₂], 4) d, r = divrem(counts[:A₂], 4)
@ -137,8 +147,8 @@ end
let Ω = E7, α = first(Ω) let Ω = E7, α = first(Ω)
counts = countmap([ counts = countmap([
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for PropertyT.Roots.classify_sub_root_system(Ω, α, γ)
γ in Ω if !PropertyT.Roots.isproportional(α, γ) for γ in Ω if !PropertyT.Roots.isproportional(α, γ)
]) ])
@test Set(keys(counts)) == subtypes @test Set(keys(counts)) == subtypes
d, r = divrem(counts[:A₂], 4) d, r = divrem(counts[:A₂], 4)
@ -155,8 +165,8 @@ end
let Ω = E6, α = first(Ω) let Ω = E6, α = first(Ω)
counts = countmap([ counts = countmap([
PropertyT.Roots.classify_sub_root_system(Ω, α, γ) for PropertyT.Roots.classify_sub_root_system(Ω, α, γ)
γ in Ω if !PropertyT.Roots.isproportional(α, γ) for γ in Ω if !PropertyT.Roots.isproportional(α, γ)
]) ])
@test Set(keys(counts)) == subtypes @test Set(keys(counts)) == subtypes
d, r = divrem(counts[:A₂], 4) d, r = divrem(counts[:A₂], 4)
@ -165,4 +175,135 @@ end
end end
end end
end end
end
@testset "Levels in Sp2n" begin
function level(rootsystem, level::Integer)
1 level 4 || throw("level is implemented only for i ∈{1,2,3,4}")
level == 1 && return PropertyT.Adj(rootsystem, :C₁) # always positive
level == 2 && return PropertyT.Adj(rootsystem, :A₁) +
PropertyT.Adj(rootsystem, Symbol("C₁×C₁")) +
PropertyT.Adj(rootsystem, :C₂) # C₂ is not positive
level == 3 && return PropertyT.Adj(rootsystem, :A₂) +
PropertyT.Adj(rootsystem, Symbol("A₁×C₁"))
level == 4 && return PropertyT.Adj(rootsystem, Symbol("A₁×A₁")) # positive
end
n = 5
G = MatrixGroups.SymplecticGroup{2n}(Int8)
RG, S, sizes = PropertyT.group_algebra(G; halfradius = 1)
Weyl = let N = n
P = PermGroup(perm"(1,2)", Perm(circshift(1:N, -1)))
Groups.Constructions.WreathProduct(PermGroup(perm"(1,2)"), P)
end
act = PropertyT.action_by_conjugation(G, Weyl)
function ^ᵃ(x, w::Groups.Constructions.WreathProductElement)
return SymbolicWedderburn.action(act, w, x)
end
Sₙ = S
Δsₙ = PropertyT.laplacians(
RG,
Sₙ,
x -> (gx = PropertyT.grading(x); Set([gx, -gx])),
)
function natural_embedding(i, Sp2m, Sp2n)
_dim(::MatrixGroups.ElementarySymplectic{N}) where {N} = N
n = _dim(first(alphabet(Sp2n))) ÷ 2
m = _dim(first(alphabet(Sp2m))) ÷ 2
l = alphabet(Sp2m)[i]
i, j = if l.symbol === :A
l.i, l.j
elseif l.symbol === :B
ifelse(l.i m, (l.i, l.j - m + n), (l.i - m + n, l.j))
else
throw("unknown type: $(l.symbol)")
end
image_of_l =
MatrixGroups.ElementarySymplectic{2n}(l.symbol, i, j, l.val)
return Groups.word_type(Sp2n)([alphabet(Sp2n)[image_of_l]])
end
@testset "Sp4 ↪ Sp12" begin
m = 2
Sₘ = let m = m, Sp2n = G
Sp2m = MatrixGroups.SymplecticGroup{2m}(Int8)
h = Groups.Homomorphism(
natural_embedding,
Sp2m,
Sp2n;
check = false,
)
S = h.(gens(Sp2m))
S = union!(S, inv.(S))
end
Δsₘ = PropertyT.laplacians(
RG,
Sₘ,
x -> (gx = PropertyT.grading(x); Set([gx, -gx])),
)
function k(n, m, i)
return 2^n * factorial(m) * factorial(n - i) ÷ factorial(m - i)
end
@testset "Level $i" for i in 1:4
Levᵢᵐ = level(Δsₘ, i)
Levᵢⁿ = level(Δsₙ, i)
if 1 i 2
@test !iszero(Levᵢᵐ)
@time Σ_W_Levᵢᵐ = sum(Levᵢᵐ^ᵃw for w in Weyl)
@test isinteger(Σ_W_Levᵢᵐ[one(G)] / Levᵢⁿ[one(G)])
@test Σ_W_Levᵢᵐ[one(G)] / Levᵢⁿ[one(G)] == k(n, m, i)
@test Σ_W_Levᵢᵐ == k(n, m, i) * Levᵢⁿ
else
@test iszero(Levᵢᵐ)
@test !iszero(Levᵢⁿ)
end
end
end
@testset "Sp8 ↪ Sp12" begin
m = 4
Sₘ = let m = m, Sp2n = G
Sp2m = MatrixGroups.SymplecticGroup{2m}(Int8)
h = Groups.Homomorphism(
natural_embedding,
Sp2m,
Sp2n;
check = false,
)
S = h.(gens(Sp2m))
S = union!(S, inv.(S))
end
Δsₘ = PropertyT.laplacians(
RG,
Sₘ,
x -> (gx = PropertyT.grading(x); Set([gx, -gx])),
)
function k(n, m, i)
return 2^n * factorial(m) * factorial(n - i) ÷ factorial(m - i)
end
@testset "Level $i" for i in 1:4
Levᵢᵐ = level(Δsₘ, i)
Levᵢⁿ = level(Δsₙ, i)
@test !iszero(Levᵢᵐ)
@time Σ_W_Levᵢᵐ = sum(Levᵢᵐ^ᵃw for w in Weyl)
@test isinteger(Σ_W_Levᵢᵐ[one(G)] / Levᵢⁿ[one(G)])
@test Σ_W_Levᵢᵐ[one(G)] / Levᵢⁿ[one(G)] == k(n, m, i)
@test Σ_W_Levᵢᵐ == k(n, m, i) * Levᵢⁿ
end
end
end
end end