mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-12-26 02:30:29 +01:00
move group specific files outside of package
This commit is contained in:
parent
ca830c392e
commit
cf38f48e6c
120
AutF4.jl
120
AutF4.jl
@ -1,120 +0,0 @@
|
|||||||
using Combinatorics
|
|
||||||
|
|
||||||
using JuMP
|
|
||||||
import SCS: SCSSolver
|
|
||||||
import Mosek: MosekSolver
|
|
||||||
|
|
||||||
push!(LOAD_PATH, "./")
|
|
||||||
using SemiDirectProduct
|
|
||||||
using GroupAlgebras
|
|
||||||
include("property(T).jl")
|
|
||||||
|
|
||||||
const N = 4
|
|
||||||
|
|
||||||
const VERBOSE = true
|
|
||||||
|
|
||||||
function permutation_matrix(p::Vector{Int})
|
|
||||||
n = length(p)
|
|
||||||
sort(p) == collect(1:n) || throw(ArgumentError("Input array must be a permutation of 1:n"))
|
|
||||||
A = eye(n)
|
|
||||||
return A[p,:]
|
|
||||||
end
|
|
||||||
|
|
||||||
SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
|
|
||||||
|
|
||||||
# const SymmetricGroup = [permutation_matrix(x) for x in SymmetricGroup_perms]
|
|
||||||
|
|
||||||
function E(i, j; dim::Int=N)
|
|
||||||
@assert i≠j
|
|
||||||
k = eye(dim)
|
|
||||||
k[i,j] = 1
|
|
||||||
return k
|
|
||||||
end
|
|
||||||
|
|
||||||
function eltary_basis_vector(i; dim::Int=N)
|
|
||||||
result = zeros(dim)
|
|
||||||
if 0 < i ≤ dim
|
|
||||||
result[i] = 1
|
|
||||||
end
|
|
||||||
return result
|
|
||||||
end
|
|
||||||
|
|
||||||
v(i; dim=N) = eltary_basis_vector(i,dim=dim)
|
|
||||||
|
|
||||||
ϱ(i,j::Int,n=N) = SemiDirectProductElement(E(i,j,dim=n), v(j,dim=n))
|
|
||||||
λ(i,j::Int,n=N) = SemiDirectProductElement(E(i,j,dim=n), -v(j,dim=n))
|
|
||||||
|
|
||||||
function ɛ(i, n::Int=N)
|
|
||||||
result = eye(n)
|
|
||||||
result[i,i] = -1
|
|
||||||
return SemiDirectProductElement(result)
|
|
||||||
end
|
|
||||||
|
|
||||||
σ(permutation::Vector{Int}) =
|
|
||||||
SemiDirectProductElement(permutation_matrix(permutation))
|
|
||||||
|
|
||||||
# Standard generating set: 103 elements
|
|
||||||
|
|
||||||
function generatingset_ofAutF(n::Int=N)
|
|
||||||
indexing = [[i,j] for i in 1:n for j in 1:n if i≠j]
|
|
||||||
ϱs = [ϱ(ij...) for ij in indexing]
|
|
||||||
λs = [λ(ij...) for ij in indexing]
|
|
||||||
ɛs = [ɛ(i) for i in 1:N]
|
|
||||||
σs = [σ(perm) for perm in SymmetricGroup(n)]
|
|
||||||
S = vcat(ϱs, λs, ɛs, σs);
|
|
||||||
S = unique(vcat(S, [inv(x) for x in S]));
|
|
||||||
return S
|
|
||||||
end
|
|
||||||
|
|
||||||
#=
|
|
||||||
Note that the element
|
|
||||||
α(i,j,k) = ϱ(i,j)*ϱ(i,k)*inv(ϱ(i,j))*inv(ϱ(i,k)),
|
|
||||||
which surely belongs to ball of radius 4 in Aut(F₄) becomes trivial under the representation
|
|
||||||
Aut(F₄) → GL₄(ℤ)⋉ℤ⁴ → GL₅(ℂ).
|
|
||||||
Moreover, due to work of Potapchik and Rapinchuk [1] every real representation of Aut(Fₙ) into GLₘ(ℂ) (for m ≤ 2n-2) factors through GLₙ(ℤ)⋉ℤⁿ, so will have the same problem.
|
|
||||||
|
|
||||||
We need a different approach!
|
|
||||||
=#
|
|
||||||
|
|
||||||
const ID = eye(N+1)
|
|
||||||
|
|
||||||
const S₁ = generatingset_ofAutF(N)
|
|
||||||
|
|
||||||
matrix_S₁ = [matrix_repr(x) for x in S₁]
|
|
||||||
|
|
||||||
const TOL=10.0^-7
|
|
||||||
|
|
||||||
matrix_S₁[1:10,:][:,1]
|
|
||||||
|
|
||||||
Δ, cm = prepare_Laplacian_and_constraints(matrix_S₁)
|
|
||||||
|
|
||||||
#solver = SCSSolver(eps=TOL, max_iters=ITERATIONS, verbose=true);
|
|
||||||
solver = MosekSolver(MSK_DPAR_INTPNT_CO_TOL_REL_GAP=TOL,
|
|
||||||
# MSK_DPAR_INTPNT_CO_TOL_PFEAS=1e-15,
|
|
||||||
# MSK_DPAR_INTPNT_CO_TOL_DFEAS=1e-15,
|
|
||||||
# MSK_IPAR_PRESOLVE_USE=0,
|
|
||||||
QUIET=!VERBOSE)
|
|
||||||
|
|
||||||
# κ, A = solve_for_property_T(S₁, solver, verbose=VERBOSE)
|
|
||||||
|
|
||||||
product_matrix = readdlm("SL₃Z.product_matrix", Int)
|
|
||||||
L = readdlm("SL₃Z.Δ.coefficients")[:, 1]
|
|
||||||
Δ = GroupAlgebraElement(L, product_matrix)
|
|
||||||
|
|
||||||
A = readdlm("matrix.A.Mosek")
|
|
||||||
κ = readdlm("kappa.Mosek")[1]
|
|
||||||
|
|
||||||
# @show eigvals(A)
|
|
||||||
@assert isapprox(eigvals(A), abs(eigvals(A)), atol=TOL)
|
|
||||||
@assert A == Symmetric(A)
|
|
||||||
|
|
||||||
|
|
||||||
const A_sqrt = real(sqrtm(A))
|
|
||||||
|
|
||||||
SOS_EOI_fp_L₁, Ω_fp_dist = check_solution(κ, A_sqrt, Δ)
|
|
||||||
|
|
||||||
κ_rational = rationalize(BigInt, κ;)
|
|
||||||
A_sqrt_rational = rationalize(BigInt, A_sqrt)
|
|
||||||
Δ_rational = rationalize(BigInt, Δ)
|
|
||||||
|
|
||||||
SOS_EOI_rat_L₁, Ω_rat_dist = check_solution(κ_rational, A_sqrt_rational, Δ_rational)
|
|
111
AutGroups.jl
111
AutGroups.jl
@ -1,111 +0,0 @@
|
|||||||
module AutGroups
|
|
||||||
|
|
||||||
using Groups
|
|
||||||
using Permutations
|
|
||||||
|
|
||||||
import Base: inv, ^
|
|
||||||
import Groups: IdSymbol, change_pow, GWord, ==, hash, reduce!
|
|
||||||
|
|
||||||
export AutSymbol, AutWord, GWord
|
|
||||||
export rmul_AutSymbol, lmul_AutSymbol, flip_AutSymbol, symmetric_AutSymbol
|
|
||||||
|
|
||||||
immutable AutSymbol <: GSymbol
|
|
||||||
gen::String
|
|
||||||
pow::Int
|
|
||||||
ex::Expr
|
|
||||||
end
|
|
||||||
|
|
||||||
(==)(s::AutSymbol, t::AutSymbol) = s.gen == t.gen && s.pow == t.pow
|
|
||||||
hash(s::AutSymbol, h::UInt) = hash(s.gen, hash(s.pow, hash(:AutSymbol, h)))
|
|
||||||
|
|
||||||
IdSymbol(::Type{AutSymbol}) = AutSymbol("(id)", 0, :(IdAutomorphism(N)))
|
|
||||||
|
|
||||||
function change_pow(s::AutSymbol, n::Int)
|
|
||||||
|
|
||||||
if n == 0
|
|
||||||
return one(s)
|
|
||||||
end
|
|
||||||
|
|
||||||
symbol = s.ex.args[1]
|
|
||||||
if symbol == :ɛ
|
|
||||||
return flip_AutSymbol(s.ex.args[2], pow=n)
|
|
||||||
elseif symbol == :σ
|
|
||||||
return symmetric_AutSymbol(s.ex.args[2], pow=n)
|
|
||||||
elseif symbol == :ϱ
|
|
||||||
return rmul_AutSymbol(s.ex.args[2], s.ex.args[3], pow=n)
|
|
||||||
elseif symbol == :λ
|
|
||||||
return lmul_AutSymbol(s.ex.args[2], s.ex.args[3], pow=n)
|
|
||||||
elseif symbol == :IdAutomorphism
|
|
||||||
return s
|
|
||||||
else
|
|
||||||
warn("Changing an unknown type of symbol! $s")
|
|
||||||
return AutSymbol(s.gen, n, s.ex)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
inv(f::AutSymbol) = change_pow(f, -1*f.pow)
|
|
||||||
(^)(s::AutSymbol, n::Integer) = change_pow(s, s.pow*n)
|
|
||||||
|
|
||||||
function rmul_AutSymbol(i,j; pow::Int=1)
|
|
||||||
gen = string('ϱ',Char(8320+i), Char(8320+j)...)
|
|
||||||
return AutSymbol(gen, pow, :(ϱ($i,$j)))
|
|
||||||
end
|
|
||||||
|
|
||||||
function lmul_AutSymbol(i,j; pow::Int=1)
|
|
||||||
gen = string('λ',Char(8320+i), Char(8320+j)...)
|
|
||||||
return AutSymbol(gen, pow, :(λ($i,$j)))
|
|
||||||
end
|
|
||||||
|
|
||||||
function flip_AutSymbol(j; pow::Int=1)
|
|
||||||
gen = string('ɛ', Char(8320 + j))
|
|
||||||
return AutSymbol(gen, (2+ pow%2)%2, :(ɛ($j)))
|
|
||||||
end
|
|
||||||
|
|
||||||
function symmetric_AutSymbol(perm::Vector{Int}; pow::Int=1)
|
|
||||||
# if perm == collect(1:length(perm))
|
|
||||||
# return one(AutSymbol)
|
|
||||||
# end
|
|
||||||
perm = Permutation(perm)
|
|
||||||
ord = order(perm)
|
|
||||||
pow = pow % ord
|
|
||||||
perm = perm^pow
|
|
||||||
gen = string('σ', [Char(8320 + i) for i in array(perm)]...)
|
|
||||||
return AutSymbol(gen, 1, :(σ($(array(perm)))))
|
|
||||||
end
|
|
||||||
|
|
||||||
function getperm(s::AutSymbol)
|
|
||||||
if s.ex.args[1] == :σ
|
|
||||||
return s.ex.args[2]
|
|
||||||
else
|
|
||||||
throw(ArgumentError("$s is not a permutation automorphism!"))
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
typealias AutWord GWord{AutSymbol}
|
|
||||||
|
|
||||||
function simplify_perms!(W::AutWord)
|
|
||||||
reduced = true
|
|
||||||
for i in 1:length(W.symbols) - 1
|
|
||||||
current = W.symbols[i]
|
|
||||||
if current.ex.args[1] == :σ
|
|
||||||
if current.pow != 1
|
|
||||||
current = symmetric_AutSymbol(perm(current), pow=current.pow)
|
|
||||||
end
|
|
||||||
next_s = W.symbols[i+1]
|
|
||||||
if next_s.ex.args[1] == :σ
|
|
||||||
reduced = false
|
|
||||||
if next_s.pow != 1
|
|
||||||
next_s = symmetric_AutSymbol(perm(next_s), pow=next_s.pow)
|
|
||||||
end
|
|
||||||
p1 = Permutation(getperm(current))
|
|
||||||
p2 = Permutation(getperm(next_s))
|
|
||||||
W.symbols[i] = one(AutSymbol)
|
|
||||||
W.symbols[i+1] = symmetric_AutSymbol(array(p1*p2))
|
|
||||||
end
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return reduced
|
|
||||||
end
|
|
||||||
end #end of module AutGroups
|
|
133
GroupAlgebras.jl
133
GroupAlgebras.jl
@ -1,133 +0,0 @@
|
|||||||
module GroupAlgebras
|
|
||||||
|
|
||||||
import Base: convert, show, isequal, ==
|
|
||||||
import Base: +, -, *, //
|
|
||||||
import Base: size, length, norm, rationalize
|
|
||||||
|
|
||||||
export GroupAlgebraElement
|
|
||||||
|
|
||||||
|
|
||||||
immutable GroupAlgebraElement{T<:Number}
|
|
||||||
coefficients::AbstractVector{T}
|
|
||||||
product_matrix::Array{Int,2}
|
|
||||||
# basis::Array{Any,1}
|
|
||||||
|
|
||||||
function GroupAlgebraElement(coefficients::AbstractVector,
|
|
||||||
product_matrix::Array{Int,2})
|
|
||||||
|
|
||||||
size(product_matrix, 1) == size(product_matrix, 2) ||
|
|
||||||
throw(ArgumentError("Product matrix has to be square"))
|
|
||||||
new(coefficients, product_matrix)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
# GroupAlgebraElement(c,pm,b) = GroupAlgebraElement(c,pm)
|
|
||||||
GroupAlgebraElement{T}(c::AbstractVector{T},pm) = GroupAlgebraElement{T}(c,pm)
|
|
||||||
|
|
||||||
convert{T<:Number}(::Type{T}, X::GroupAlgebraElement) =
|
|
||||||
GroupAlgebraElement(convert(AbstractVector{T}, X.coefficients), X.product_matrix)
|
|
||||||
|
|
||||||
show{T}(io::IO, X::GroupAlgebraElement{T}) = print(io,
|
|
||||||
"Element of Group Algebra over $T of length $(length(X)):\n $(X.coefficients)")
|
|
||||||
|
|
||||||
|
|
||||||
function isequal{T, S}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{S})
|
|
||||||
if T != S
|
|
||||||
warn("Comparing elements with different coefficients Rings!")
|
|
||||||
end
|
|
||||||
X.product_matrix == Y.product_matrix || return false
|
|
||||||
X.coefficients == Y.coefficients || return false
|
|
||||||
return true
|
|
||||||
end
|
|
||||||
|
|
||||||
(==)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = isequal(X,Y)
|
|
||||||
|
|
||||||
function add{T<:Number}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{T})
|
|
||||||
X.product_matrix == Y.product_matrix || throw(ArgumentError(
|
|
||||||
"Elements don't seem to belong to the same Group Algebra!"))
|
|
||||||
return GroupAlgebraElement(X.coefficients+Y.coefficients, X.product_matrix)
|
|
||||||
end
|
|
||||||
|
|
||||||
function add{T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
|
||||||
Y::GroupAlgebraElement{S})
|
|
||||||
warn("Adding elements with different base rings!")
|
|
||||||
return GroupAlgebraElement(+(promote(X.coefficients, Y.coefficients)...),
|
|
||||||
X.product_matrix)
|
|
||||||
end
|
|
||||||
|
|
||||||
(+)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,Y)
|
|
||||||
(-)(X::GroupAlgebraElement) = GroupAlgebraElement(-X.coefficients, X.product_matrix)
|
|
||||||
(-)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,-Y)
|
|
||||||
|
|
||||||
function algebra_multiplication{T<:Number}(X::AbstractVector{T}, Y::AbstractVector{T}, pm::Array{Int,2})
|
|
||||||
result = zeros(X)
|
|
||||||
for (j,y) in enumerate(Y)
|
|
||||||
if y != zero(T)
|
|
||||||
for (i, index) in enumerate(pm[:,j])
|
|
||||||
if X[i] != zero(T)
|
|
||||||
index == 0 && throw(ArgumentError("The product don't seem to belong to the span of basis!"))
|
|
||||||
result[index] += X[i]*y
|
|
||||||
end
|
|
||||||
end
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return result
|
|
||||||
end
|
|
||||||
|
|
||||||
function group_star_multiplication{T<:Number}(X::GroupAlgebraElement{T},
|
|
||||||
Y::GroupAlgebraElement{T})
|
|
||||||
X.product_matrix == Y.product_matrix || ArgumentError(
|
|
||||||
"Elements don't seem to belong to the same Group Algebra!")
|
|
||||||
result = algebra_multiplication(X.coefficients, Y.coefficients, X.product_matrix)
|
|
||||||
return GroupAlgebraElement(result, X.product_matrix)
|
|
||||||
end
|
|
||||||
|
|
||||||
function group_star_multiplication{T<:Number, S<:Number}(
|
|
||||||
X::GroupAlgebraElement{T},
|
|
||||||
Y::GroupAlgebraElement{S})
|
|
||||||
S == T || warn("Multiplying elements with different base rings!")
|
|
||||||
return group_star_multiplication(promote(X,Y)...)
|
|
||||||
end
|
|
||||||
|
|
||||||
(*){T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
|
||||||
Y::GroupAlgebraElement{S}) = group_star_multiplication(X,Y);
|
|
||||||
|
|
||||||
(*){T<:Number}(a::T, X::GroupAlgebraElement{T}) = GroupAlgebraElement(
|
|
||||||
a*X.coefficients, X.product_matrix)
|
|
||||||
|
|
||||||
function scalar_multiplication{T<:Number, S<:Number}(a::T,
|
|
||||||
X::GroupAlgebraElement{S})
|
|
||||||
promote_type(T,S) == S || warn("Scalar and coefficients are in different rings! Promoting result to $(promote_type(T,S))")
|
|
||||||
return GroupAlgebraElement(a*X.coefficients, X.product_matrix)
|
|
||||||
end
|
|
||||||
|
|
||||||
(*){T<:Number}(a::T,X::GroupAlgebraElement) = scalar_multiplication(a, X)
|
|
||||||
|
|
||||||
//{T<:Rational, S<:Rational}(X::GroupAlgebraElement{T}, a::S) =
|
|
||||||
GroupAlgebraElement(X.coefficients//a, X.product_matrix)
|
|
||||||
|
|
||||||
//{T<:Rational, S<:Integer}(X::GroupAlgebraElement{T}, a::S) =
|
|
||||||
X//convert(T,a)
|
|
||||||
|
|
||||||
length(X::GroupAlgebraElement) = length(X.coefficients)
|
|
||||||
size(X::GroupAlgebraElement) = size(X.coefficients)
|
|
||||||
|
|
||||||
function norm(X::GroupAlgebraElement, p=2)
|
|
||||||
if p == 1
|
|
||||||
return sum(abs(X.coefficients))
|
|
||||||
elseif p == Inf
|
|
||||||
return max(abs(X.coefficients))
|
|
||||||
else
|
|
||||||
return norm(X.coefficients, p)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
ɛ(X::GroupAlgebraElement) = sum(X.coefficients)
|
|
||||||
|
|
||||||
function rationalize{T<:Integer, S<:Number}(
|
|
||||||
::Type{T}, X::GroupAlgebraElement{S}; tol=eps(S))
|
|
||||||
v = rationalize(T, X.coefficients, tol=tol)
|
|
||||||
return GroupAlgebraElement(v, X.product_matrix)
|
|
||||||
end
|
|
||||||
|
|
||||||
end
|
|
@ -1,124 +0,0 @@
|
|||||||
Symmetrise := function(elts)
|
|
||||||
return Unique(Concatenation(elts, List(elts, Inverse)));
|
|
||||||
end;
|
|
||||||
|
|
||||||
MYAllProducts := function(elts1, elts2)
|
|
||||||
local products, elt;
|
|
||||||
products := [];
|
|
||||||
for elt in elts1 do
|
|
||||||
products := Concatenation(products, elt*elts2);
|
|
||||||
od;
|
|
||||||
return products;
|
|
||||||
end;
|
|
||||||
|
|
||||||
Products := function(elts, n)
|
|
||||||
local products, i;
|
|
||||||
if n<=0 then
|
|
||||||
return [ ];
|
|
||||||
elif n = 1 then
|
|
||||||
return elts;
|
|
||||||
else
|
|
||||||
products := elts;
|
|
||||||
for i in [2..n] do
|
|
||||||
products := MYAllProducts(elts, products);
|
|
||||||
od;
|
|
||||||
return products;
|
|
||||||
fi;
|
|
||||||
end;
|
|
||||||
|
|
||||||
IsSupportedOn := function(basis, elt)
|
|
||||||
local elt_supp, x;
|
|
||||||
elt_supp := Support(elt);
|
|
||||||
for x in elt_supp do
|
|
||||||
if not x in basis then
|
|
||||||
return false;
|
|
||||||
fi;
|
|
||||||
od;
|
|
||||||
return true;
|
|
||||||
end;
|
|
||||||
|
|
||||||
Laplacian := function(G, generating_set)
|
|
||||||
local QG, emb, result, S, g, elt;
|
|
||||||
QG := GroupRing(Rationals, G);;
|
|
||||||
emb := Embedding(G,QG);;
|
|
||||||
|
|
||||||
S := generating_set;
|
|
||||||
|
|
||||||
result := Length(S)*One(QG);
|
|
||||||
for g in S do
|
|
||||||
result := result - g^emb;
|
|
||||||
od;
|
|
||||||
return result;
|
|
||||||
end;
|
|
||||||
|
|
||||||
Vectorise := function(elt, basis)
|
|
||||||
local result, l, i, g, coeff, axis;
|
|
||||||
Assert(0, IsSupportedOn(basis, elt),
|
|
||||||
"AssertionError: Element of interest is not supported on the basis!");
|
|
||||||
result := List(0*[1..Length(basis)]);
|
|
||||||
|
|
||||||
l := CoefficientsAndMagmaElements(elt);
|
|
||||||
for i in [1..Length(l)/2] do
|
|
||||||
g := l[2*i-1];
|
|
||||||
coeff := l[2*i];
|
|
||||||
axis := Position(basis, g);
|
|
||||||
result[axis] := result[axis] + coeff;
|
|
||||||
od;
|
|
||||||
return result;
|
|
||||||
end;
|
|
||||||
|
|
||||||
Constraints := function(basis)
|
|
||||||
local result, i, j, pos;
|
|
||||||
result := [];
|
|
||||||
for i in [1..Length(basis)] do
|
|
||||||
Add(result,[]);
|
|
||||||
od;
|
|
||||||
for i in [1..Length(basis)] do
|
|
||||||
for j in [1..Length(basis)] do
|
|
||||||
pos := Position(basis, Inverse(basis[i])*basis[j]);
|
|
||||||
if not pos = fail then
|
|
||||||
Add(result[pos], [i,j]);
|
|
||||||
fi;
|
|
||||||
od;
|
|
||||||
od;
|
|
||||||
return result;
|
|
||||||
end;
|
|
||||||
|
|
||||||
SDPGenerateAll := function(G, S, basis, name)
|
|
||||||
local QG, emb, delta, delta_sq, delta_vec, delta_sq_vec, product_constr;
|
|
||||||
Print("Initializing GroupAlgebra");
|
|
||||||
QG := GroupRing(Rationals, G);;
|
|
||||||
Print(".");
|
|
||||||
emb := Embedding(G,QG);;
|
|
||||||
Print("\n");
|
|
||||||
|
|
||||||
Print("Initializing GroupAlgebra elements: ");
|
|
||||||
delta := Laplacian(G, S);;
|
|
||||||
Print("delta! ");
|
|
||||||
delta_sq := delta^2;;
|
|
||||||
Print("delta_sq! ");
|
|
||||||
Print("\n");
|
|
||||||
|
|
||||||
Print("Check if delta_sq is supported on the given basis: ");
|
|
||||||
if not IsSupportedOn(basis, delta_sq) then
|
|
||||||
Print("delta_sq is not supported on basis\n");
|
|
||||||
return fail;
|
|
||||||
else
|
|
||||||
Print("it is!\n");
|
|
||||||
|
|
||||||
PrintTo(Concatenation("./basis.", name), basis);
|
|
||||||
Print("Written basis to ", Concatenation("./basis.", name), "\n");
|
|
||||||
delta_vec := Vectorise(delta, basis);;
|
|
||||||
PrintTo(Concatenation("./delta.", name), delta_vec);
|
|
||||||
Print("Written delta to ", Concatenation("./delta.", name), "\n");
|
|
||||||
delta_sq_vec := Vectorise(delta_sq, basis);;
|
|
||||||
PrintTo(Concatenation("./delta_sq.", name), delta_sq_vec);
|
|
||||||
Print("Written delta_sq to ", Concatenation("./delta_sq.", name), "\n");
|
|
||||||
|
|
||||||
product_constr := Constraints(basis);;
|
|
||||||
PrintTo(Concatenation("./constraints.", name), product_constr);
|
|
||||||
Print("Written Matrix Constraints to ", Concatenation("./Constraints.", name), "\n");
|
|
||||||
return "Done!";
|
|
||||||
fi;
|
|
||||||
|
|
||||||
end;;
|
|
142
SL3Z.jl
142
SL3Z.jl
@ -1,142 +0,0 @@
|
|||||||
using JLD
|
|
||||||
using JuMP
|
|
||||||
import Primes: isprime
|
|
||||||
import SCS: SCSSolver
|
|
||||||
import Mosek: MosekSolver
|
|
||||||
|
|
||||||
using Mods
|
|
||||||
|
|
||||||
using Groups
|
|
||||||
|
|
||||||
function SL_generatingset(n::Int)
|
|
||||||
|
|
||||||
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
|
||||||
|
|
||||||
S = [E(i,j,N=n) for (i,j) in indexing];
|
|
||||||
S = vcat(S, [convert(Array{Int,2},x') for x in S]);
|
|
||||||
S = vcat(S, [convert(Array{Int,2},inv(x)) for x in S]);
|
|
||||||
return unique(S)
|
|
||||||
end
|
|
||||||
|
|
||||||
function E(i::Int, j::Int; val=1, N::Int=3, mod=Inf)
|
|
||||||
@assert i≠j
|
|
||||||
m = eye(Int, N)
|
|
||||||
m[i,j] = val
|
|
||||||
if mod == Inf
|
|
||||||
return m
|
|
||||||
else
|
|
||||||
return [Mod(x,mod) for x in m]
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
function cofactor(i,j,M)
|
|
||||||
z1 = ones(Bool,size(M,1))
|
|
||||||
z1[i] = false
|
|
||||||
|
|
||||||
z2 = ones(Bool,size(M,2))
|
|
||||||
z2[j] = false
|
|
||||||
|
|
||||||
return M[z1,z2]
|
|
||||||
end
|
|
||||||
|
|
||||||
import Base.LinAlg.det
|
|
||||||
|
|
||||||
function det(M::Array{Mod,2})
|
|
||||||
if size(M,1) ≠ size(M,2)
|
|
||||||
d = Mod(0,M[1,1].mod)
|
|
||||||
elseif size(M,1) == 2
|
|
||||||
d = M[1,1]*M[2,2] - M[1,2]*M[2,1]
|
|
||||||
else
|
|
||||||
d = zero(eltype(M))
|
|
||||||
for i in 1:size(M,1)
|
|
||||||
d += (-1)^(i+1)*M[i,1]*det(cofactor(i,1,M))
|
|
||||||
end
|
|
||||||
end
|
|
||||||
# @show (M, d)
|
|
||||||
return d
|
|
||||||
end
|
|
||||||
|
|
||||||
function adjugate(M)
|
|
||||||
K = similar(M)
|
|
||||||
for i in 1:size(M,1), j in 1:size(M,2)
|
|
||||||
K[j,i] = (-1)^(i+j)*det(cofactor(i,j,M))
|
|
||||||
end
|
|
||||||
return K
|
|
||||||
end
|
|
||||||
|
|
||||||
import Base: inv, one, zero, *
|
|
||||||
|
|
||||||
one(::Type{Mod}) = 1
|
|
||||||
zero(::Type{Mod}) = 0
|
|
||||||
zero(x::Mod) = Mod(x.mod)
|
|
||||||
|
|
||||||
function inv(M::Array{Mod,2})
|
|
||||||
d = det(M)
|
|
||||||
d ≠ 0*d || thow(ArgumentError("Matrix is not invertible!"))
|
|
||||||
return inv(det(M))*adjugate(M)
|
|
||||||
return adjugate(M)
|
|
||||||
end
|
|
||||||
|
|
||||||
function SL_generatingset(n::Int, p::Int)
|
|
||||||
(p > 1 && n > 1) || throw(ArgumentError("Both n and p should be integers!"))
|
|
||||||
isprime(p) || throw(ArgumentError("p should be a prime number!"))
|
|
||||||
|
|
||||||
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
|
||||||
S = [E(i,j, N=n, mod=p) for (i,j) in indexing]
|
|
||||||
S = vcat(S, [inv(s) for s in S])
|
|
||||||
S = vcat(S, [permutedims(x, [2,1]) for x in S]);
|
|
||||||
|
|
||||||
return unique(S)
|
|
||||||
end
|
|
||||||
|
|
||||||
function products{T}(U::AbstractVector{T}, V::AbstractVector{T})
|
|
||||||
result = Vector{T}()
|
|
||||||
for u in U
|
|
||||||
for v in V
|
|
||||||
push!(result, u*v)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return unique(result)
|
|
||||||
end
|
|
||||||
|
|
||||||
function ΔandSDPconstraints(identity, S)
|
|
||||||
B₁ = vcat([identity], S)
|
|
||||||
B₂ = products(B₁, B₁);
|
|
||||||
B₃ = products(B₁, B₂);
|
|
||||||
B₄ = products(B₁, B₃);
|
|
||||||
@assert B₄[1:length(B₂)] == B₂
|
|
||||||
|
|
||||||
product_matrix = create_product_matrix(B₄,length(B₂));
|
|
||||||
sdp_constraints = constraints_from_pm(product_matrix, length(B₄))
|
|
||||||
L_coeff = splaplacian_coeff(S, B₂, length(B₄));
|
|
||||||
Δ = GroupAlgebraElement(L_coeff, product_matrix)
|
|
||||||
|
|
||||||
return Δ, sdp_constraints
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@everywhere push!(LOAD_PATH, "./")
|
|
||||||
using GroupAlgebras
|
|
||||||
include("property(T).jl")
|
|
||||||
|
|
||||||
const N = 3
|
|
||||||
|
|
||||||
const name = "SL$(N)Z"
|
|
||||||
const ID = eye(Int, N)
|
|
||||||
S() = SL_generatingset(N)
|
|
||||||
const upper_bound=0.27
|
|
||||||
|
|
||||||
|
|
||||||
# const p = 7
|
|
||||||
# const upper_bound=0.738 # (N,p) = (3,7)
|
|
||||||
|
|
||||||
# const name = "SL($N,$p)"
|
|
||||||
# const ID = [Mod(x,p) for x in eye(Int,N)]
|
|
||||||
# S() = SL_generatingset(N, p)
|
|
||||||
|
|
||||||
BLAS.set_num_threads(4)
|
|
||||||
@time check_property_T(name, ID, S; verbose=true, tol=1e-10, upper_bound=upper_bound)
|
|
@ -1,88 +0,0 @@
|
|||||||
module SemiDirectProduct
|
|
||||||
|
|
||||||
import Base: convert, show, isequal, ==, size, inv
|
|
||||||
import Base: +, -, *, //
|
|
||||||
|
|
||||||
export SemiDirectProductElement, matrix_repr
|
|
||||||
|
|
||||||
"""
|
|
||||||
Implements elements of a semidirect product of groups H and N, where N is normal in the product. Usually written as H ⋉ N.
|
|
||||||
The multiplication inside semidirect product is defined as
|
|
||||||
(h₁, n₁) ⋅ (h₂, n₂) = (h₁h₂, n₁φ(h₁)(n₂)),
|
|
||||||
where φ:H → Aut(N) is a homomorphism.
|
|
||||||
|
|
||||||
In the case below we implement H = GL(n,K) and N = Kⁿ, the Affine Group (i.e. GL(n,K) ⋉ Kⁿ) where elements of GL(n,K) act on vectors in Kⁿ via matrix multiplication.
|
|
||||||
# Arguments:
|
|
||||||
* `h::Array{T,2}` : square invertible matrix (element of GL(n,K))
|
|
||||||
* `n::Vector{T,1}` : vector in Kⁿ
|
|
||||||
* `φ = φ(h,n) = φ(h)(n)` :2-argument function which defines the action of GL(n,K) on Kⁿ; matrix-vector multiplication by default.
|
|
||||||
"""
|
|
||||||
immutable SemiDirectProductElement{T<:Number}
|
|
||||||
h::Array{T,2}
|
|
||||||
n::Vector{T}
|
|
||||||
φ::Function
|
|
||||||
|
|
||||||
function SemiDirectProductElement(h::Array{T,2},n::Vector{T},φ::Function)
|
|
||||||
# size(h,1) == size(h,2)|| throw(ArgumentError("h has to be square matrix"))
|
|
||||||
det(h) ≠ 0 || throw(ArgumentError("h has to be invertible!"))
|
|
||||||
new(h,n,φ)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
SemiDirectProductElement{T}(h::Array{T,2}, n::Vector{T}, φ) =
|
|
||||||
SemiDirectProductElement{T}(h,n,φ)
|
|
||||||
|
|
||||||
SemiDirectProductElement{T}(h::Array{T,2}, n::Vector{T}) =
|
|
||||||
SemiDirectProductElement(h,n,*)
|
|
||||||
|
|
||||||
SemiDirectProductElement{T}(h::Array{T,2}) =
|
|
||||||
SemiDirectProductElement(h,zeros(h[:,1]))
|
|
||||||
|
|
||||||
SemiDirectProductElement{T}(n::Vector{T}) =
|
|
||||||
SemiDirectProductElement(eye(eltype(n), n))
|
|
||||||
|
|
||||||
convert{T<:Number}(::Type{T}, X::SemiDirectProductElement) =
|
|
||||||
SemiDirectProductElement(convert(Array{T,2},X.h),
|
|
||||||
convert(Vector{T},X.n),
|
|
||||||
X.φ)
|
|
||||||
|
|
||||||
size(X::SemiDirectProductElement) = (size(X.h), size(X.n))
|
|
||||||
|
|
||||||
matrix_repr{T}(X::SemiDirectProductElement{T}) =
|
|
||||||
[X.h X.n; zeros(T, 1, size(X.h,2)) [1]]
|
|
||||||
|
|
||||||
show{T}(io::IO, X::SemiDirectProductElement{T}) = print(io,
|
|
||||||
"Element of SemiDirectProduct over $T of size $(size(X)):\n",
|
|
||||||
matrix_repr(X))
|
|
||||||
|
|
||||||
function isequal{T}(X::SemiDirectProductElement{T}, Y::SemiDirectProductElement{T})
|
|
||||||
X.h == Y.h || return false
|
|
||||||
X.n == Y.n || return false
|
|
||||||
X.φ == Y.φ || return false
|
|
||||||
return true
|
|
||||||
end
|
|
||||||
|
|
||||||
function isequal{T,S}(X::SemiDirectProductElement{T}, Y::SemiDirectProductElement{S})
|
|
||||||
W = promote_type(T,S)
|
|
||||||
warn("Comparing elements with different coefficients! trying to promoting to $W")
|
|
||||||
X = convert(W, X)
|
|
||||||
Y = convert(W, Y)
|
|
||||||
return isequal(X,Y)
|
|
||||||
end
|
|
||||||
|
|
||||||
(==)(X::SemiDirectProductElement, Y::SemiDirectProductElement) = isequal(X, Y)
|
|
||||||
|
|
||||||
function semidirect_multiplication{T}(X::SemiDirectProductElement{T},
|
|
||||||
Y::SemiDirectProductElement{T})
|
|
||||||
size(X) == size(Y) || throw(ArgumentError("trying to multiply elements from different groups!"))
|
|
||||||
return SemiDirectProductElement(X.h*Y.h, X.n + X.φ(X.h, Y.n))
|
|
||||||
end
|
|
||||||
|
|
||||||
(*){T}(X::SemiDirectProductElement{T}, Y::SemiDirectProductElement{T}) =
|
|
||||||
semidirect_multiplication(X,Y)
|
|
||||||
|
|
||||||
inv{T}(X::SemiDirectProductElement{T}) =
|
|
||||||
SemiDirectProductElement(inv(X.h), X.φ(inv(X.h), -X.n))
|
|
||||||
|
|
||||||
|
|
||||||
end
|
|
Loading…
Reference in New Issue
Block a user