1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 15:25:29 +01:00

remove old laplacians.jl, 1712.* 1812.*

This commit is contained in:
Marek Kaluba 2022-11-07 16:29:26 +01:00
parent 0e5799862b
commit f00bfb7ca9
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
4 changed files with 0 additions and 407 deletions

View File

@ -1,329 +0,0 @@
###############################################################################
# Settings and filenames
abstract type Settings end
struct Naive{El} <: Settings
name::String
G::Union{Group, NCRing}
S::Vector{El}
halfradius::Int
upper_bound::Float64
solver::JuMP.OptimizerFactory
force_compute::Bool
end
struct Symmetrized{El} <: Settings
name::String
G::Union{Group, NCRing}
S::Vector{El}
autS::Group
halfradius::Int
upper_bound::Float64
solver::JuMP.OptimizerFactory
force_compute::Bool
end
function Settings(name::String,
G::Union{Group, NCRing}, S::AbstractVector{El}, solver::JuMP.OptimizerFactory;
halfradius=2, upper_bound=1.0, force_compute=false) where El <: Union{GroupElem, NCRingElem}
return Naive(name, G, S, halfradius, upper_bound, solver, force_compute)
end
function Settings(name::String,
G::Union{Group, NCRing}, S::AbstractVector{El}, autS::Group, solver::JuMP.OptimizerFactory;
halfradius=2, upper_bound=1.0, force_compute=false) where El <: Union{GroupElem, NCRingElem}
return Symmetrized(name, G, S, autS, halfradius, upper_bound, solver, force_compute)
end
suffix(s::Settings) = "$(s.upper_bound)"
prepath(s::Settings) = s.name
fullpath(s::Settings) = joinpath(prepath(s), suffix(s))
filename(sett::Settings, s::Symbol; kwargs...) = filename(sett, Val{s}; kwargs...)
filename(sett::Settings, ::Type{Val{:fulllog}}; kwargs...) =
filename(fullpath(sett), "full", "log", suffix=Dates.now(); kwargs...)
filename(sett::Settings, ::Type{Val{:solverlog}}; kwargs...) =
filename(fullpath(sett), "solver", "log", suffix=Dates.now(); kwargs...)
filename(sett::Settings, ::Type{Val{}}; kwargs...) =
filename(prepath(sett), "delta", "jld"; kwargs...)
filename(sett::Settings, ::Type{Val{:BlockDecomposition}}; kwargs...) =
filename(prepath(sett), "BlockDecomposition", "jld"; kwargs...)
filename(sett::Settings, ::Type{Val{:solution}}; kwargs...) =
filename(fullpath(sett), "solution", "jld"; kwargs...)
function filename(sett::Settings, ::Type{Val{:warmstart}}; kwargs...)
filename(fullpath(sett), "warmstart", "jld"; kwargs...)
end
function filename(path::String, name, extension; prefix=nothing, suffix=nothing)
pre = isnothing(prefix) ? "" : "$(prefix)_"
suf = isnothing(suffix) ? "" : "_$(suffix)"
return joinpath(path, "$pre$name$suf.$extension")
end
###############################################################################
# Approximation by SOS (logged & warmstarted)
function warmstart(sett::Settings)
warmstart_fname = filename(sett, :warmstart)
try
ws = load(warmstart_fname, "warmstart")
@info "Loaded $warmstart_fname."
return ws
catch ex
@warn "$(ex.msg). Could not provide a warmstart to the solver."
return nothing
end
end
function approximate_by_SOS(sett::Naive,
elt::GroupRingElem, orderunit::GroupRingElem;
solverlog=tempname()*".log")
isdir(fullpath(sett)) || mkpath(fullpath(sett))
@info "Creating SDP problem..."
SDP_problem = SOS_problem_primal(elt, orderunit, upper_bound=sett.upper_bound)
@info Base.repr(SDP_problem)
@info "Logging solver's progress into $solverlog"
ws = warmstart(sett)
@time status, ws = PropertyT.solve(solverlog, SDP_problem, sett.solver, ws)
@info "Optimization finished:" status
P = value.(SDP_problem[:P])
λ = value(SDP_problem[])
if any(isnan, P)
@warn "The solution seems to contain NaNs. Not overriding warmstart.jld"
else
save(filename(sett, :warmstart),
"warmstart", (ws.primal, ws.dual, ws.slack),
"P", P,
"λ", λ)
end
save(filename(sett, :warmstart, suffix=Dates.now()),
"warmstart", (ws.primal, ws.dual, ws.slack),
"P", P,
"λ", λ)
return λ, P
end
function approximate_by_SOS(sett::Symmetrized,
elt::GroupRingElem, orderunit::GroupRingElem;
solverlog=tempname()*".log")
isdir(fullpath(sett)) || mkpath(fullpath(sett))
orbit_data = try
orbit_data = load(filename(sett, :BlockDecomposition), "BlockDecomposition")
@info "Loaded orbit data."
orbit_data
catch ex
@warn ex.msg
GroupRings.hasbasis(parent(orderunit)) ||
throw("You need to define basis of Group Ring to compute orbit decomposition!")
@info "Computing orbit and Wedderburn decomposition..."
orbit_data = BlockDecomposition(parent(orderunit), sett.autS)
save(filename(sett, :BlockDecomposition), "BlockDecomposition", orbit_data)
orbit_data
end
orbit_data = decimate(orbit_data)
@info "Creating SDP problem..."
SDP_problem, varP = SOS_problem_primal(elt, orderunit, orbit_data, upper_bound=sett.upper_bound)
@info Base.repr(SDP_problem)
@info "Logging solver's progress into $solverlog"
ws = warmstart(sett)
@time status, ws = PropertyT.solve(solverlog, SDP_problem, sett.solver, ws)
@info "Optimization finished:" status
λ = value(SDP_problem[])
Ps = [value.(P) for P in varP]
if any(any(isnan, P) for P in Ps)
@warn "The solution seems to contain NaNs. Not overriding warmstart.jld"
else
save(filename(sett, :warmstart),
"warmstart", (ws.primal, ws.dual, ws.slack),
"Ps", Ps,
"λ", λ)
end
save(filename(sett, :warmstart, suffix=Dates.now()),
"warmstart", (ws.primal, ws.dual, ws.slack),
"Ps", Ps,
"λ", λ)
@info "Reconstructing P..."
@time P = reconstruct(Ps, orbit_data)
return λ, P
end
###############################################################################
# Checking solution
function certify_SOS_decomposition(elt::GroupRingElem, orderunit::GroupRingElem,
λ::Number, Q::AbstractMatrix; R::Int=2)
separator = "-"^76
@info "$separator\nChecking in floating-point arithmetic..." λ
eoi = elt - λ*orderunit
@info("Computing sum of squares decomposition...")
@time residual = eoi - compute_SOS(parent(eoi), augIdproj(Q))
L1_norm = norm(residual,1)
floatingpoint_λ = λ - 2.0^(2ceil(log2(R)))*L1_norm
info_strs = ["Numerical metrics of the obtained SOS:",
"ɛ(elt - λu - ∑ξᵢ*ξᵢ) ≈ $(aug(residual))",
"‖elt - λu - ∑ξᵢ*ξᵢ‖₁ ≈ $(L1_norm)",
"Floating point (NOT certified) λ ≈"]
@info join(info_strs, "\n") floatingpoint_λ
if floatingpoint_λ 0
return floatingpoint_λ
end
λ = @interval(λ)
info_strs = [separator,
"Checking in interval arithmetic...",
"λ ∈ "]
@info(join(info_strs, "\n"))
eoi = elt - λ*orderunit
@info("Projecting columns of Q to the augmentation ideal...")
@time Q, check = augIdproj(Interval, Q)
@info "Checking that sum of every column contains 0.0..." check_augmented=check
check || @error("The following numbers are meaningless!")
@info("Computing sum of squares decomposition...")
@time residual = eoi - compute_SOS(parent(eoi), Q)
L1_norm = norm(residual,1)
certified_λ = λ - 2.0^(2ceil(log2(R)))*L1_norm
info_strs = ["Numerical metrics of the obtained SOS:",
"ɛ(elt - λu - ∑ξᵢ*ξᵢ) ∈ $(aug(residual))",
"‖elt - λu - ∑ξᵢ*ξᵢ‖₁ ∈ $(L1_norm)",
"Interval aritmetic (certified) λ ∈"]
@info join(info_strs, "\n") certified_λ
return certified_λ
end
function spectral_gap(Δ::GroupRingElem, λ::Number, Q::AbstractMatrix; R::Int=2)
@info "elt = Δ², u = Δ"
return certify_SOS_decomposition(Δ^2, Δ, λ, Q, R=R)
end
###############################################################################
# Interpreting the numerical results
Kazhdan_constant(λ::Number, N::Integer) = sqrt(2*λ/N)
Kazhdan_constant(λ::Interval, N::Integer) = IntervalArithmetic.inf(sqrt(2*λ/N))
function check_property_T(sett::Settings)
@info sett
certified_sgap = spectral_gap(sett)
return interpret_results(sett, certified_sgap)
end
function Base.show(io::IO, sett::Settings)
info_strs = ["PropertyT Settings:",
"Group: $(sett.name)",
"Upper bound for λ: $(sett.upper_bound), on halfradius $(sett.halfradius).",
"Force computations: $(sett.force_compute);",
"Results will be stored in ./$(PropertyT.prepath(sett));",
"Solver: $(typeof(sett.solver()))",
"Solvers options: "]
append!(info_strs, [rpad(" $k", 30)* "\t$v" for (k,v) in sett.solver().options])
push!(info_strs, "="^76)
print(io, join(info_strs, "\n"))
end
function interpret_results(name::String, sgap::Number, N::Integer)
if sgap > 0
κ = Kazhdan_constant(sgap, N)
@info "κ($name, S) ≥ : Group HAS property (T)!"
return true
end
info_strs = [
"The certified lower bound on the spectral gap is negative:",
"λ($name, S) ≥ 0.0 > $sgap",
"This tells us nothing about property (T)",
]
@info join(info_strs, "\n")
return false
end
interpret_results(sett::Settings, sgap::Number) =
interpret_results(sett.name, sgap, length(sett.S))
function spectral_gap(sett::Settings)
fp = PropertyT.fullpath(sett)
isdir(fp) || mkpath(fp)
Δ = try
Δ = loadGRElem(filename(sett,), sett.G)
@info "Loaded precomputed Δ."
Δ
catch ex
@warn ex.msg
@info "Computing Δ..."
Δ = Laplacian(sett.S, sett.halfradius)
saveGRElem(filename(sett, ), Δ)
Δ
end
function compute(sett, Δ)
@info "Computing λ and P..."
λ, P = approximate_by_SOS(sett, Δ^2, Δ;
solverlog=filename(sett, :solverlog))
save(filename(sett, :solution), "λ", λ, "P", P)
λ < 0 && @warn "Solver did not produce a valid solution!"
return λ, P
end
if sett.force_compute
λ, P = compute(sett, Δ)
else
λ, P =try
λ, P = load(filename(sett, :solution), "λ", "P")
@info "Loaded existing λ and P."
λ, P
catch ex
@warn ex.msg
compute(sett, Δ)
end
end
info_strs = ["Numerical metrics of matrix solution:",
"sum(P) = $(sum(P))",
"maximum(P) = $(maximum(P))",
"minimum(P) = $(minimum(P))"]
@info join(info_strs, "\n")
isapprox(eigvals(P), abs.(eigvals(P))) ||
@warn "The solution matrix doesn't seem to be positive definite!"
@time Q = real(sqrt(Symmetric( (P.+ P')./2 )))
certified_sgap = spectral_gap(Δ, λ, Q, R=sett.halfradius)
return certified_sgap
end

View File

@ -1,26 +0,0 @@
indexing(n) = [(i,j) for i in 1:n for j in 1:n if i≠j]
function generating_set(G::AutGroup{N}, n=N) where N
rmuls = [Groups.transvection_R(i,j) for (i,j) in indexing(n)]
lmuls = [Groups.transvection_L(i,j) for (i,j) in indexing(n)]
gen_set = G.([rmuls; lmuls])
return [gen_set; inv.(gen_set)]
end
function EltaryMat(M::MatAlgebra, i::Integer, j::Integer, val=1)
@assert i j
@assert 1 i nrows(M)
@assert 1 j ncols(M)
m = one(M)
m[i,j] = val
return m
end
function generating_set(M::MatAlgebra, n=nrows(M))
elts = [EltaryMat(M, i,j) for (i,j) in indexing(n)]
return elem_type(M)[elts; inv.(elts)]
end
include("sqadjop.jl")

View File

@ -12,7 +12,6 @@ using Groups
using StarAlgebras
using SymbolicWedderburn
include("laplacians.jl")
include("constraint_matrix.jl")
include("sos_sdps.jl")
include("certify.jl")

View File

@ -1,51 +0,0 @@
###############################################################################
#
# Laplacians
#
###############################################################################
function spLaplacian(RG::GroupRing, S::AbstractVector, T::Type=Float64)
result = RG(T)
result[one(RG.group)] = T(length(S))
for s in S
result[s] -= one(T)
end
return result
end
function Laplacian(S::AbstractVector{REl}, halfradius) where REl<:Union{NCRingElem, GroupElem}
G = parent(first(S))
@info "Generating metric ball of radius" radius=2halfradius
@time E_R, sizes = Groups.wlmetric_ball(S, radius=2halfradius)
@info "Generated balls:" sizes
@info "Creating product matrix..."
rdict = GroupRings.reverse_dict(E_R)
@time pm = GroupRings.create_pm(E_R, rdict, sizes[halfradius]; twisted=true)
RG = GroupRing(G, E_R, rdict, pm)
Δ = spLaplacian(RG, S)
return Δ
end
function saveGRElem(fname::String, g::GroupRingElem)
RG = parent(g)
JLD.save(fname, "coeffs", g.coeffs, "pm", RG.pm, "G", RG.group)
end
function loadGRElem(fname::String, RG::GroupRing)
coeffs = load(fname, "coeffs")
return GroupRingElem(coeffs, RG)
end
function loadGRElem(fname::String, G::Union{Group, NCRing})
pm = load(fname, "pm")
RG = GroupRing(G, pm)
return loadGRElem(fname, RG)
end
function loadGRElem(fname::String)
pm, G = load(fname, "pm", "G")
RG = GroupRing(G, pm)
return loadGRElem(fname, RG)
end