mirror of
https://github.com/kalmarek/PropertyT.jl.git
synced 2024-11-14 14:15:28 +01:00
329 lines
10 KiB
Julia
329 lines
10 KiB
Julia
using Printf
|
|
|
|
###############################################################################
|
|
#
|
|
# Settings and filenames
|
|
#
|
|
###############################################################################
|
|
|
|
abstract type Settings end
|
|
|
|
struct Naive{El} <: Settings
|
|
name::String
|
|
G::Union{Group, NCRing}
|
|
S::Vector{El}
|
|
halfradius::Int
|
|
upper_bound::Float64
|
|
|
|
solver::JuMP.OptimizerFactory
|
|
force_compute::Bool
|
|
end
|
|
|
|
struct Symmetrized{El} <: Settings
|
|
name::String
|
|
G::Union{Group, NCRing}
|
|
S::Vector{El}
|
|
autS::Group
|
|
halfradius::Int
|
|
upper_bound::Float64
|
|
|
|
solver::JuMP.OptimizerFactory
|
|
force_compute::Bool
|
|
end
|
|
|
|
function Settings(name::String,
|
|
G::Union{Group, NCRing}, S::AbstractVector{El}, solver::JuMP.OptimizerFactory;
|
|
halfradius::Integer=2, upper_bound::Float64=1.0, force_compute=false) where El <: Union{GroupElem, NCRingElem}
|
|
return Naive(name, G, S, halfradius, upper_bound, solver, force_compute)
|
|
end
|
|
|
|
function Settings(name::String,
|
|
G::Union{Group, NCRing}, S::AbstractVector{El}, autS::Group, solver::JuMP.OptimizerFactory;
|
|
halfradius::Integer=2, upper_bound::Float64=1.0, force_compute=false) where El <: Union{GroupElem, NCRingElem}
|
|
return Symmetrized(name, G, S, autS, halfradius, upper_bound, solver, force_compute)
|
|
end
|
|
|
|
prefix(s::Naive) = s.name
|
|
prefix(s::Symmetrized) = "o"*s.name
|
|
suffix(s::Settings) = "$(s.upper_bound)"
|
|
prepath(s::Settings) = prefix(s)
|
|
fullpath(s::Settings) = joinpath(prefix(s), suffix(s))
|
|
|
|
filename(sett::Settings, s::Symbol; kwargs...) = filename(sett, Val{s}; kwargs...)
|
|
|
|
filename(sett::Settings, ::Type{Val{:fulllog}}) =
|
|
joinpath(fullpath(sett), "full_$(string(now())).log")
|
|
filename(sett::Settings, ::Type{Val{:solverlog}}) =
|
|
joinpath(fullpath(sett), "solver_$(string(now())).log")
|
|
|
|
filename(sett::Settings, ::Type{Val{:Δ}}) =
|
|
joinpath(prepath(sett), "delta.jld")
|
|
filename(sett::Settings, ::Type{Val{:OrbitData}}) =
|
|
joinpath(prepath(sett), "OrbitData.jld")
|
|
|
|
filename(sett::Settings, ::Type{Val{:solution}}) =
|
|
joinpath(fullpath(sett), "solution.jld")
|
|
|
|
function filename(sett::Settings, ::Type{Val{:warmstart}}; date=false)
|
|
if date
|
|
return joinpath(fullpath(sett), "warmstart_$(Dates.now()).jld")
|
|
else
|
|
return joinpath(fullpath(sett), "warmstart.jld")
|
|
end
|
|
end
|
|
|
|
###############################################################################
|
|
#
|
|
# Approximation by SOS (logged & warmstarted)
|
|
#
|
|
###############################################################################
|
|
|
|
function warmstart(sett::Settings)
|
|
warmstart_fname = filename(sett, :warmstart)
|
|
try
|
|
ws = load(warmstart_fname, "warmstart")
|
|
@info "Loaded $warmstart_fname."
|
|
return ws
|
|
catch ex
|
|
@warn "$(ex.msg). Could not provide a warmstart to the solver."
|
|
return nothing
|
|
end
|
|
end
|
|
|
|
function approximate_by_SOS(sett::Naive,
|
|
elt::GroupRingElem, orderunit::GroupRingElem;
|
|
solverlog=tempname()*".log")
|
|
|
|
isdir(fullpath(sett)) || mkpath(fullpath(sett))
|
|
|
|
@info "Creating SDP problem..."
|
|
SDP_problem = SOS_problem(elt, orderunit, upper_bound=sett.upper_bound)
|
|
@info Base.repr(SDP_problem)
|
|
|
|
@info "Logging solver's progress into $solverlog"
|
|
|
|
ws = warmstart(sett)
|
|
@time status, ws = PropertyT.solve(solverlog, SDP_problem, sett.solver, ws)
|
|
@info "Optimization finished:" status
|
|
|
|
P = value.(SDP_problem[:P])
|
|
λ = value(SDP_problem[:λ])
|
|
|
|
if any(isnan.(P))
|
|
@warn "The solution seems to contain NaNs. Not overriding warmstart.jld"
|
|
else
|
|
save(filename(sett, :warmstart), "warmstart", (ws.primal, ws.dual, ws.slack), "P", P, "λ", λ)
|
|
end
|
|
|
|
save(filename(sett, :warmstart, date=true),
|
|
"warmstart", (ws.primal, ws.dual, ws.slack), "P", P, "λ", λ)
|
|
|
|
return λ, P
|
|
end
|
|
|
|
function approximate_by_SOS(sett::Symmetrized,
|
|
elt::GroupRingElem, orderunit::GroupRingElem;
|
|
solverlog=tempname()*".log")
|
|
|
|
isdir(fullpath(sett)) || mkpath(fullpath(sett))
|
|
|
|
orbit_data = try
|
|
orbit_data = load(filename(sett, :OrbitData), "OrbitData")
|
|
@info "Loaded orbit data."
|
|
orbit_data
|
|
catch ex
|
|
@warn ex.msg
|
|
isdefined(parent(orderunit), :basis) || throw("You need to define basis of Group Ring to compute orbit decomposition!")
|
|
@info "Computing orbit and Wedderburn decomposition..."
|
|
orbit_data = OrbitData(parent(orderunit), sett.autS)
|
|
save(filename(sett, :OrbitData), "OrbitData", orbit_data)
|
|
orbit_data
|
|
end
|
|
|
|
orbit_data = decimate(orbit_data)
|
|
|
|
@info "Creating SDP problem..."
|
|
SDP_problem, varP = SOS_problem(elt, orderunit, orbit_data, upper_bound=sett.upper_bound)
|
|
@info Base.repr(SDP_problem)
|
|
|
|
@info "Logging solver's progress into $solverlog"
|
|
|
|
ws = warmstart(sett)
|
|
@time status, ws = PropertyT.solve(solverlog, SDP_problem, sett.solver, ws)
|
|
@info "Optimization finished:" status
|
|
|
|
λ = value(SDP_problem[:λ])
|
|
Ps = [value.(P) for P in varP]
|
|
|
|
if any(any(isnan.(P)) for P in Ps)
|
|
@warn "The solution seems to contain NaNs. Not overriding warmstart.jld"
|
|
else
|
|
save(filename(sett, :warmstart), "warmstart", (ws.primal, ws.dual, ws.slack), "Ps", Ps, "λ", λ)
|
|
end
|
|
|
|
save(filename(sett, :warmstart, date=true),
|
|
"warmstart", (ws.primal, ws.dual, ws.slack), "Ps", Ps, "λ", λ)
|
|
|
|
@info "Reconstructing P..."
|
|
@time P = reconstruct(Ps, orbit_data)
|
|
|
|
return λ, P
|
|
end
|
|
|
|
###############################################################################
|
|
#
|
|
# Checking solution
|
|
#
|
|
###############################################################################
|
|
|
|
function certify_SOS_decomposition(elt::GroupRingElem, orderunit::GroupRingElem,
|
|
λ::Number, Q::AbstractMatrix; R::Int=2)
|
|
separator = "-"^76
|
|
@info "$separator\nChecking in floating-point arithmetic..." λ
|
|
eoi = elt - λ*orderunit
|
|
|
|
@info("Computing sum of squares decomposition...")
|
|
@time residual = eoi - compute_SOS(parent(eoi), augIdproj(Q))
|
|
|
|
L1_norm = norm(residual,1)
|
|
floatingpoint_λ = λ - 2.0^(2ceil(log2(R)))*L1_norm
|
|
|
|
info_strs = ["Numerical metrics of the obtained SOS:",
|
|
"ɛ(elt - λu - ∑ξᵢ*ξᵢ) ≈ $(aug(residual))",
|
|
"‖elt - λu - ∑ξᵢ*ξᵢ‖₁ ≈ $(L1_norm)",
|
|
"Floating point (NOT certified) λ ≈"]
|
|
@info join(info_strs, "\n") floatingpoint_λ
|
|
|
|
if floatingpoint_λ ≤ 0
|
|
return floatingpoint_λ
|
|
end
|
|
|
|
λ = @interval(λ)
|
|
info_strs = [separator,
|
|
"Checking in interval arithmetic...",
|
|
"λ ∈ $λ"]
|
|
@info(join(info_strs, "\n"))
|
|
eoi = elt - λ*orderunit
|
|
|
|
@info("Projecting columns of Q to the augmentation ideal...")
|
|
@time Q, check = augIdproj(Interval, Q)
|
|
@info "Checking that sum of every column contains 0.0..." check_augmented=check
|
|
check || @warn("The following numbers are meaningless!")
|
|
|
|
@info("Computing sum of squares decomposition...")
|
|
@time residual = eoi - compute_SOS(parent(eoi), Q)
|
|
|
|
L1_norm = norm(residual,1)
|
|
certified_λ = λ - 2.0^(2ceil(log2(R)))*L1_norm
|
|
|
|
info_strs = ["Numerical metrics of the obtained SOS:",
|
|
"ɛ(elt - λu - ∑ξᵢ*ξᵢ) ∈ $(aug(residual))",
|
|
"‖elt - λu - ∑ξᵢ*ξᵢ‖₁ ∈ $(L1_norm)",
|
|
"Interval aritmetic (certified) λ ∈"]
|
|
@info join(info_strs, "\n") certified_λ
|
|
|
|
return certified_λ.lo
|
|
end
|
|
|
|
function spectral_gap(Δ::GroupRingElem, λ::Number, Q::AbstractMatrix; R::Int=2)
|
|
@info "elt = Δ², u = Δ"
|
|
return certify_SOS_decomposition(Δ^2, Δ, λ, Q, R=R)
|
|
end
|
|
|
|
###############################################################################
|
|
#
|
|
# Interpreting the numerical results
|
|
#
|
|
###############################################################################
|
|
|
|
Kazhdan(λ::Number, N::Integer) = sqrt(2*λ/N)
|
|
|
|
function check_property_T(sett::Settings)
|
|
@info sett
|
|
certified_sgap = spectral_gap(sett)
|
|
return interpret_results(sett, certified_sgap)
|
|
end
|
|
|
|
function Base.show(io::IO, sett::Settings)
|
|
info_strs = ["PropertyT Settings:",
|
|
"Group: $(sett.name)",
|
|
"Upper bound for λ: $(sett.upper_bound), on halfradius $(sett.halfradius).",
|
|
"Force computations: $(sett.force_compute);",
|
|
"Results will be stored in ./$(PropertyT.prepath(sett));",
|
|
"Solver: $(typeof(sett.solver()))",
|
|
"Solvers options: "]
|
|
append!(info_strs, [rpad(" $k", 30)* "→ \t$v" for (k,v) in sett.solver().options])
|
|
push!(info_strs, "="^76)
|
|
print(io, join(info_strs, "\n"))
|
|
end
|
|
|
|
function interpret_results(sett::Settings, sgap::Number)
|
|
if sgap > 0
|
|
Kazhdan_κ = Kazhdan(sgap, length(sett.S))
|
|
if Kazhdan_κ > 0
|
|
@info "κ($(sett.name), S) ≥ $Kazhdan_κ: Group HAS property (T)!"
|
|
return true
|
|
end
|
|
end
|
|
info_strs = ["The certified lower bound on the spectral gap is negative:",
|
|
"λ($(sett.name), S) ≥ 0.0 > $sgap",
|
|
"This tells us nothing about property (T)"]
|
|
@info join(info_strs, "\n")
|
|
return false
|
|
end
|
|
|
|
function spectral_gap(sett::Settings)
|
|
fp = PropertyT.fullpath(sett)
|
|
isdir(fp) || mkpath(fp)
|
|
|
|
Δ = try
|
|
Δ = loadGRElem(filename(sett,:Δ), sett.G)
|
|
@info "Loaded precomputed Δ."
|
|
Δ
|
|
catch ex
|
|
@warn ex.msg
|
|
@info "Computing Δ..."
|
|
Δ = Laplacian(sett.S, sett.halfradius)
|
|
saveGRElem(filename(sett, :Δ), Δ)
|
|
Δ
|
|
end
|
|
|
|
function compute(sett, Δ)
|
|
@info "Computing λ and P..."
|
|
λ, P = approximate_by_SOS(sett, Δ^2, Δ;
|
|
solverlog=filename(sett, :solverlog))
|
|
|
|
save(filename(sett, :solution), "λ", λ, "P", P)
|
|
|
|
λ < 0 && @warn "Solver did not produce a valid solution!"
|
|
return λ, P
|
|
end
|
|
|
|
if sett.force_compute
|
|
λ, P = compute(sett, Δ)
|
|
else
|
|
λ, P =try
|
|
λ, P = load(filename(sett, :solution), "λ", "P")
|
|
@info "Loaded existing λ and P."
|
|
λ, P
|
|
catch ex
|
|
@warn ex.msg
|
|
compute(sett, Δ)
|
|
end
|
|
end
|
|
|
|
info_strs = ["Numerical metrics of matrix solution:",
|
|
"sum(P) = $(sum(P))",
|
|
"maximum(P) = $(maximum(P))",
|
|
"minimum(P) = $(minimum(P))"]
|
|
@info join(info_strs, "\n")
|
|
|
|
isapprox(eigvals(P), abs.(eigvals(P))) ||
|
|
@warn "The solution matrix doesn't seem to be positive definite!"
|
|
|
|
@time Q = real(sqrt(Symmetric( (P.+ P')./2 )))
|
|
certified_sgap = spectral_gap(Δ, λ, Q, R=sett.halfradius)
|
|
|
|
return certified_sgap
|
|
end
|