1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 15:25:29 +01:00
PropertyT.jl/scripts/G₂_Adj.jl
2023-03-20 01:40:59 +01:00

180 lines
3.8 KiB
Julia

using LinearAlgebra
BLAS.set_num_threads(1)
ENV["OMP_NUM_THREADS"] = 4
using MKL_jll
include(joinpath(@__DIR__, "../test/optimizers.jl"))
using Groups
import Groups.MatrixGroups
using PropertyT
using SymbolicWedderburn
using SymbolicWedderburn.StarAlgebras
using PermutationGroups
include(joinpath(@__DIR__, "G₂_gens.jl"))
G, roots, Weyl = G₂_roots_weyl()
const HALFRADIUS = 2
const UPPER_BOUND = Inf
RG, S, sizes = @time PropertyT.group_algebra(G, halfradius = HALFRADIUS)
Δ = RG(length(S)) - sum(RG(s) for s in S)
wd = let Σ = Weyl, RG = RG
act = PropertyT.AlphabetPermutation{eltype(Σ),Int64}(
Dict(g => PermutationGroups.perm(g) for g in Σ),
)
@time SymbolicWedderburn.WedderburnDecomposition(
Float64,
Σ,
act,
basis(RG),
StarAlgebras.Basis{UInt16}(@view basis(RG)[1:sizes[HALFRADIUS]]),
semisimple = false,
)
end
elt = Δ^2
unit = Δ
@time model, varP = PropertyT.sos_problem_primal(
elt,
unit,
wd;
upper_bound = UPPER_BOUND,
augmented = true,
show_progress = true,
)
warm = nothing
begin
@time status, warm = PropertyT.solve(
model,
scs_optimizer(;
linear_solver = SCS.MKLDirectSolver,
eps = 1e-10,
max_iters = 20_000,
accel = 50,
alpha = 1.95,
),
warm,
)
@info "reconstructing the solution"
Q = @time begin
wd = wd
Ps = [JuMP.value.(P) for P in varP]
if any(any(isnan, P) for P in Ps)
throw("solver was probably interrupted, no valid solution available")
end
Qs = real.(sqrt.(Ps))
PropertyT.reconstruct(Qs, wd)
end
P = Q' * Q
@info "certifying the solution"
@time certified, λ = PropertyT.certify_solution(
elt,
unit,
JuMP.objective_value(model),
Q;
halfradius = HALFRADIUS,
augmented = true,
)
end
### grading below
function desubscriptify(symbol::Symbol)
digits = [
Int(l) - 0x2080 for
l in reverse(string(symbol)) if 0 Int(l) - 0x2080 9
]
res = 0
for (i, d) in enumerate(digits)
res += 10^(i - 1) * d
end
return res
end
function PropertyT.grading(g::MatrixGroups.MatrixElt, roots = roots)
id = desubscriptify(g.id)
return roots[id]
end
Δs = PropertyT.laplacians(
RG,
S,
x -> (gx = PropertyT.grading(x); Set([gx, -gx])),
)
elt = PropertyT.Adj(Δs)
elt == Δ^2 - PropertyT.Sq(Δs)
unit = Δ
@time model, varP = PropertyT.sos_problem_primal(
elt,
unit,
wd;
upper_bound = UPPER_BOUND,
augmented = true,
)
warm = nothing
begin
@time status, warm = PropertyT.solve(
model,
scs_optimizer(;
linear_solver = SCS.MKLDirectSolver,
eps = 1e-10,
max_iters = 50_000,
accel = 50,
alpha = 1.95,
),
warm,
)
@info "reconstructing the solution"
Q = @time begin
wd = wd
Ps = [JuMP.value.(P) for P in varP]
if any(any(isnan, P) for P in Ps)
throw("solver was probably interrupted, no valid solution available")
end
Qs = real.(sqrt.(Ps))
PropertyT.reconstruct(Qs, wd)
end
P = Q' * Q
@info "certifying the solution"
@time certified, λ = PropertyT.certify_solution(
elt,
unit,
JuMP.objective_value(model),
Q;
halfradius = HALFRADIUS,
augmented = true,
)
end
# Δ² - 1 / 1 · Sq → -0.8818044647162608
# Δ² - 2 / 3 · Sq → -0.1031738
# Δ² - 1 / 2 · Sq → 0.228296213895906
# Δ² - 1 / 3 · Sq → 0.520
# Δ² - 0 / 1 · Sq → 0.9676851592000731
# Sq → 0.333423
# vals = [
# 1.0 -0.8818
# 2/3 -0.1032
# 1/2 0.2282
# 1/3 0.520
# 0 0.9677
# ]