Poprawa 2017

This commit is contained in:
kalmarek 2018-12-03 08:47:43 +01:00
parent 60bbc6329f
commit a90cf71f97
10 changed files with 704 additions and 633 deletions

131
433241.md
View File

@ -3,91 +3,88 @@ ID_testu: 433241
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Naukowcy postanowili odpowiedzieć na pytanie:
Uczestnicy zaraportowali następujące poziomy bólu:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[6, 0, 4, 5, 6, 5, 8, 3, 3, 4, 9, 9, 5, 5, 1, 6, 5, 4, 7, 1, 6, 5]`
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Grupa testowa: `[3, 7, 6, 4, 3, 9, 7, 4, 5, 2, 3, 4, 4, 7, 6, 4, 5, 5]`
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 0, 0, 1, 1, 1, 0, 0, 1, 0]
Student 02 : [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Student 03 : [1, 0, 0, 0, 0, 1, 0, 0, 1, 1]
Student 04 : [1, 0, 0, 1, 1, 0, 0, 0, 1, 1]
Student 05 : [0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
Student 06 : [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]
Student 07 : [0, 1, 0, 0, 1, 0, 0, 0, 1, 1]
Student 08 : [0, 1, 1, 0, 0, 1, 1, 1, 1, 1]
Student 09 : [1, 0, 1, 0, 0, 1, 0, 0, 1, 0]
Student 10 : [0, 0, 0, 1, 0, 0, 1, 1, 0, 0]
Student 11 : [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 0, 0, 1, 1, 1, 0, 0, 1, 0]
Prowadzący 02 : [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Prowadzący 03 : [1, 0, 0, 0, 0, 1, 0, 0, 1, 1]
Prowadzący 04 : [1, 0, 0, 1, 1, 0, 0, 0, 1, 1]
Prowadzący 05 : [0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
Prowadzący 06 : [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]
Prowadzący 07 : [0, 1, 0, 0, 1, 0, 0, 0, 1, 1]
Prowadzący 08 : [0, 1, 1, 0, 0, 1, 1, 1, 1, 1]
Prowadzący 09 : [1, 0, 1, 0, 0, 1, 0, 0, 1, 0]
Prowadzący 10 : [0, 0, 0, 1, 0, 0, 1, 1, 0, 0]
Prowadzący 11 : [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A.
Z pól po lewej stronie drogi zebrano
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `64%` wszystkich odpowiedzi.
`[2.85, 3.32, 3.02, 2.72, 2.57, 3.75, 3.44, 3.05, 3.26, 2.6]`
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
[kg groszku]. Zbiór z pól po prawej stronie zaowocował
`[3.12, 3.49, 3.28, 4.22, 3.47, 3.63, 4.0, 3.22, 3.41, 3.59, 3.63, 2.54, 4.32]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.54, 3.34, 3.34, 4.18, 3.17, 3.16, 3.08, 3.68, 4.25, 3.35, 3.2, 2.65, 2.94]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
> `TAK` stanowi nie więcej niż `64%` wszystkich odpowiedzi.
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[46.81, 47.28, 40.26, 47.12, 46.53, 42.1, 46.7, 47.12, 49.65, 47.2, 48.07, 48.75, 47.96, 47.72, 47.27, 39.33, 43.97, 45.51, 47.18, 44.95, 46.19, 41.06, 44.72, 48.54, 46.94, 46.99, 46.41]`
* `A = [63.3, 41.5, 45.5, 59.5, 50.5, 41.7, 37.2, 72.6, 63.1, 51.5, 57.7, 38.1, 43.5, 49.9]`
* `B = [57.5, 68.2, 59.7, 61.5, 65.7, 56.8, 59.0, 61.0, 61.5]`
Po podaniu leku XYZ wyniki były następujące:
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[49.74, 48.19, 35.76, 49.13, 44.46, 34.89, 39.9, 48.7, 53.28, 51.82, 51.61, 50.34, 49.88, 51.78, 49.59, 37.21, 36.83, 47.73, 47.86, 49.66, 47.97, 34.37, 37.62, 53.0, 48.9, 52.85, 50.96]`
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 7 kobiet i 20 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[41.06, 43.97, 42.1, 40.26, 39.33, 46.7, 44.72]`
- po: `[34.37, 36.83, 34.89, 35.76, 37.21, 39.9, 37.62]`
* Mężczyźni:
- przed: `[47.18, 47.96, 45.51, 46.19, 46.99, 46.53, 48.54, 46.94, 47.27, 48.07, 46.41, 46.81, 47.2, 47.28, 44.95, 48.75, 47.72, 47.12, 47.12, 49.65]`
- po: `[47.86, 49.88, 47.73, 47.97, 52.85, 44.46, 53.0, 48.9, 49.59, 51.61, 50.96, 49.74, 51.82, 48.19, 49.66, 50.34, 51.78, 49.13, 48.7, 53.28]`
Co teraz można powiedzieć o skuteczności leku XYZ?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując).
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
Zdefiniować czym jest cytat, parafraza, plagiat.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `43` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `28` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `436` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `278` wyniki. Co mówi to o jego zdolnościach?
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `25` zawodowych sportowców;
* `25` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

117
433388.md
View File

@ -3,73 +3,88 @@ ID_testu: 433388
**Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
Naukowcy postanowili odpowiedzieć na pytanie:
`[58, 35, 63, 95, 118, 113, 106, 115, 120, 98, 54, 77, 92, 97, 86, 100, 85, 63, 140, 64, 149, 101, 49, 120]`
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
Student 02 : [0, 0, 1, 0, 0, 0, 0, 0, 1, 1]
Student 03 : [1, 1, 0, 1, 0, 0, 0, 0, 1, 1]
Student 04 : [0, 1, 1, 0, 0, 0, 0, 0, 1, 0]
Student 05 : [0, 0, 1, 0, 0, 1, 1, 1, 0, 0]
Student 06 : [0, 0, 1, 0, 1, 0, 0, 1, 1, 0]
Student 07 : [1, 0, 1, 1, 1, 1, 1, 1, 1, 1]
Student 08 : [0, 1, 1, 0, 0, 1, 1, 1, 0, 1]
Student 09 : [1, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Student 10 : [0, 1, 1, 1, 0, 0, 0, 0, 0, 1]
Student 11 : [0, 1, 0, 1, 0, 0, 1, 0, 0, 0]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
Prowadzący 02 : [0, 0, 1, 0, 0, 0, 0, 0, 1, 1]
Prowadzący 03 : [1, 1, 0, 1, 0, 0, 0, 0, 1, 1]
Prowadzący 04 : [0, 1, 1, 0, 0, 0, 0, 0, 1, 0]
Prowadzący 05 : [0, 0, 1, 0, 0, 1, 1, 1, 0, 0]
Prowadzący 06 : [0, 0, 1, 0, 1, 0, 0, 1, 1, 0]
Prowadzący 07 : [1, 0, 1, 1, 1, 1, 1, 1, 1, 1]
Prowadzący 08 : [0, 1, 1, 0, 0, 1, 1, 1, 0, 1]
Prowadzący 09 : [1, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Prowadzący 10 : [0, 1, 1, 1, 0, 0, 0, 0, 0, 1]
Prowadzący 11 : [0, 1, 0, 1, 0, 0, 1, 0, 0, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw.
Na pola wyszło 3 grup studentów.
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `42%` wszystkich odpowiedzi.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy:
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
`[3.3, 2.0, 4.1, 9.3, 13.2, 12.3, 11.2, 12.7, 13.5, 9.9, 2.5, 6.3]`
`[8.9, 9.7, 7.8, 10.2, 7.7, 4.0, 16.8, 4.2, 18.3, 10.3, 2.0, 13.4]`
`[11.0, 9.1, 9.4, 6.2, 7.3, 7.7, 3.9, 14.3, 8.2, 10.5, 13.0, 4.6]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[12.1, 11.3, 11.8, 17.8, 14.9, 7.0, 15.6, 9.3, 15.1, 12.8, 11.9, 8.4]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
> `TAK` stanowi nie więcej niż `42%` wszystkich odpowiedzi.
**Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 18 meczy każdej z drużn skończyły się następującymi wynikami:
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* ABC vs ???:
`0:3, 2:1, 2:2, 3:1, 3:2, 2:2, 0:2, 1:0, 1:3, 1:0, 0:2, 1:3, 2:2, 1:2, 1:2, 2:1, 4:2, 0:1`
* `A = [42.1, 42.9, 33.8, 24.5, 35.8, 48.3, 57.6, 55.6, 52.8, 56.6, 58.3, 49.8, 32.1, 41.1]`
* `B = [58.2, 59.6, 56.5, 60.2, 56.4, 50.4, 70.9, 50.8, 73.3]`
* XYZ vs ???:
`3:5, 1:3, 2:3, 2:4, 3:2, 4:2, 2:5, 2:4, 2:4, 2:3, 2:1, 5:1, 0:4, 3:4, 1:3, 5:1, 0:3, 3:3`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać?
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Prowadzimy badania na szczurach.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+6.7 %` wagi,
* `+16.1 %` większa wariancja wagi.
Zdefiniować czym jest cytat, parafraza, plagiat.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik.
Dysponujesz już pomiarami wag grupy kontrolnej:
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
wagi = `[237, 275, 303, 297, 288, 300, 305, 279, 226, 253, 272, 278, 264, 281, 264, 237, 329, 239, 340]`
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `28` zawodowych sportowców;
* `21` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

137
433393.md
View File

@ -3,87 +3,96 @@ ID_testu: 433393
**Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
Naukowcy postanowili odpowiedzieć na pytanie:
`[62, 120, 44, 47, 67, 121, 93, 63, 61, 113, 121, 119, 98, 73, 102, 74, 118, 57, 100, 120, 168, -9, 105, 76, 66]`
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
Student 02 : [1, 0, 1, 1, 0, 0, 0, 1, 0, 1]
Student 03 : [1, 0, 1, 1, 0, 1, 1, 1, 1, 1]
Student 04 : [1, 1, 0, 1, 1, 0, 1, 0, 1, 1]
Student 05 : [1, 0, 0, 0, 1, 0, 1, 1, 1, 0]
Student 06 : [0, 0, 0, 0, 1, 1, 0, 0, 1, 1]
Student 07 : [0, 0, 0, 0, 1, 1, 1, 0, 1, 1]
Student 08 : [0, 0, 0, 1, 0, 1, 0, 1, 1, 1]
Student 09 : [0, 0, 0, 1, 0, 0, 0, 1, 1, 0]
Student 10 : [1, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Student 11 : [1, 0, 0, 0, 0, 1, 0, 1, 0, 1]
Student 12 : [1, 0, 0, 0, 1, 0, 1, 0, 0, 1]
Student 13 : [1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
Student 14 : [0, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Student 15 : [1, 0, 0, 1, 0, 1, 1, 1, 1, 0]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
Prowadzący 02 : [1, 0, 1, 1, 0, 0, 0, 1, 0, 1]
Prowadzący 03 : [1, 0, 1, 1, 0, 1, 1, 1, 1, 1]
Prowadzący 04 : [1, 1, 0, 1, 1, 0, 1, 0, 1, 1]
Prowadzący 05 : [1, 0, 0, 0, 1, 0, 1, 1, 1, 0]
Prowadzący 06 : [0, 0, 0, 0, 1, 1, 0, 0, 1, 1]
Prowadzący 07 : [0, 0, 0, 0, 1, 1, 1, 0, 1, 1]
Prowadzący 08 : [0, 0, 0, 1, 0, 1, 0, 1, 1, 1]
Prowadzący 09 : [0, 0, 0, 1, 0, 0, 0, 1, 1, 0]
Prowadzący 10 : [1, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Prowadzący 11 : [1, 0, 0, 0, 0, 1, 0, 1, 0, 1]
Prowadzący 12 : [1, 0, 0, 0, 1, 0, 1, 0, 0, 1]
Prowadzący 13 : [1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
Prowadzący 14 : [0, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Prowadzący 15 : [1, 0, 0, 1, 0, 1, 1, 1, 1, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw.
Na pola wyszło 4 grup studentów.
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `50%` wszystkich odpowiedzi.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy:
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
`[5.3, 15.0, 2.3, 2.8, 6.1, 15.1, 10.4, 5.5, 5.1, 13.7, 15.1]`
`[14.8, 11.2, 7.1, 12.0, 7.3, 14.6, 4.4, 11.7, 15.0, 23.0, 2.0]`
`[12.5, 7.6, 5.9, 19.4, 13.1, 14.9, 4.4, 13.0, 14.0, 17.0, 6.1]`
`[7.2, 15.6, 9.0, 7.2, 18.3, 7.1, 10.0, 8.4, 8.4, 5.6, 9.4]`
1. Czy pojedynczy student który zebrał `10.1` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[16.8, 14.3, 11.4, 11.3, 14.7, 9.2, 3.9, 14.5, 13.4, 16.5, 9.9]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
> `TAK` stanowi nie więcej niż `50%` wszystkich odpowiedzi.
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[47.74, 39.65, 48.37, 40.07, 46.13, 47.5, 44.5, 42.02, 46.18, 48.5, 48.44, 49.81, 44.55, 38.39, 47.6, 48.53, 45.54, 38.16, 39.73, 47.36, 42.19, 45.32, 45.78, 48.12, 50.9, 46.27]`
* `A = [49.8, 36.8, 38.7, 62.0, 31.6, 32.7, 40.7, 62.3, 50.9, 39.1, 38.3, 59.0, 62.2, 61.5]`
* `B = [61.9, 55.4, 63.2, 55.6, 67.3, 51.0, 62.7, 68.0, 80.8]`
Po podaniu leku XYZ wyniki były następujące:
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[50.5, 34.95, 49.99, 35.65, 49.34, 53.65, 39.8, 44.4, 48.79, 54.03, 55.17, 49.01, 40.68, 33.83, 50.28, 50.79, 50.95, 30.18, 32.66, 49.5, 34.3, 48.25, 47.32, 51.11, 55.36, 50.61]`
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 8 kobiet i 18 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[39.65, 44.5, 38.16, 38.39, 40.07, 44.55, 42.19, 39.73]`
- po: `[34.95, 39.8, 30.18, 33.83, 35.65, 40.68, 34.3, 32.66]`
* Mężczyźni:
- przed: `[45.54, 48.12, 48.53, 48.44, 47.36, 46.13, 47.6, 46.18, 48.37, 45.32, 47.5, 48.5, 50.9, 42.02, 47.74, 46.27, 45.78, 49.81]`
- po: `[50.95, 51.11, 50.79, 55.17, 49.5, 49.34, 50.28, 48.79, 49.99, 48.25, 53.65, 54.03, 55.36, 44.4, 50.5, 50.61, 47.32, 49.01]`
Co teraz można powiedzieć o skuteczności leku XYZ?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Prowadzimy badania na szczurach.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+8.0 %` wagi,
* `+20.0 %` większa wariancja wagi.
Zdefiniować czym jest cytat, parafraza, plagiat.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik.
Dysponujesz już pomiarami wag grupy kontrolnej:
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
wagi = `[255, 307, 238, 241, 259, 308, 282, 255, 254, 300, 307, 306, 287, 264, 291, 265, 305, 250, 289, 307, 350, 190, 293, 267, 258]`
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `26` zawodowych sportowców;
* `23` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

142
433401.md
View File

@ -3,94 +3,96 @@ ID_testu: 433401
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Naukowcy postanowili odpowiedzieć na pytanie:
Uczestnicy zaraportowali następujące poziomy bólu:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[9, 4, 1, 4, 8, 5, 6, 6, 4, 6, 1, 4, 1, 5, 2, 5, 7, 5, 5, 6]`
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Grupa testowa: `[4, 7, 4, 5, 9, 1, 6, 7, 2, 5, 1, 9, 4, 3, 8, 2, 6, 4]`
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 1, 1, 0, 0, 0, 1, 0, 0, 1]
Student 02 : [0, 0, 0, 1, 1, 1, 0, 1, 1, 0]
Student 03 : [1, 0, 1, 1, 0, 0, 0, 1, 1, 1]
Student 04 : [0, 1, 1, 0, 1, 0, 1, 0, 1, 1]
Student 05 : [1, 1, 0, 1, 1, 0, 1, 0, 0, 1]
Student 06 : [0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
Student 07 : [1, 1, 1, 0, 0, 1, 1, 1, 1, 1]
Student 08 : [0, 0, 0, 0, 0, 0, 0, 1, 0, 1]
Student 09 : [1, 1, 0, 1, 1, 0, 0, 0, 0, 1]
Student 10 : [1, 0, 0, 1, 0, 1, 1, 0, 1, 1]
Student 11 : [1, 1, 0, 0, 0, 0, 0, 1, 1, 0]
Student 12 : [0, 1, 0, 1, 1, 0, 1, 0, 0, 0]
Student 13 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
Student 14 : [1, 0, 1, 1, 0, 0, 0, 0, 1, 1]
Student 15 : [0, 1, 1, 1, 0, 1, 1, 0, 0, 1]
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 1, 1, 0, 0, 0, 1, 0, 0, 1]
Prowadzący 02 : [0, 0, 0, 1, 1, 1, 0, 1, 1, 0]
Prowadzący 03 : [1, 0, 1, 1, 0, 0, 0, 1, 1, 1]
Prowadzący 04 : [0, 1, 1, 0, 1, 0, 1, 0, 1, 1]
Prowadzący 05 : [1, 1, 0, 1, 1, 0, 1, 0, 0, 1]
Prowadzący 06 : [0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
Prowadzący 07 : [1, 1, 1, 0, 0, 1, 1, 1, 1, 1]
Prowadzący 08 : [0, 0, 0, 0, 0, 0, 0, 1, 0, 1]
Prowadzący 09 : [1, 1, 0, 1, 1, 0, 0, 0, 0, 1]
Prowadzący 10 : [1, 0, 0, 1, 0, 1, 1, 0, 1, 1]
Prowadzący 11 : [1, 1, 0, 0, 0, 0, 0, 1, 1, 0]
Prowadzący 12 : [0, 1, 0, 1, 1, 0, 1, 0, 0, 0]
Prowadzący 13 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
Prowadzący 14 : [1, 0, 1, 1, 0, 0, 0, 0, 1, 1]
Prowadzący 15 : [0, 1, 1, 1, 0, 1, 1, 0, 0, 1]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A.
Z pól po lewej stronie drogi zebrano
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `57%` wszystkich odpowiedzi.
`[2.95, 3.31, 2.98, 3.09, 3.48, 2.4, 3.35, 2.91, 2.13, 2.97, 2.27, 3.51, 3.02, 2.86]`
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
[kg groszku]. Zbiór z pól po prawej stronie zaowocował
`[3.99, 2.36, 3.51, 3.86, 2.62, 3.93, 4.94, 3.66, 2.37, 3.08, 4.23, 4.37, 4.13]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.83, 2.77, 2.8, 3.15, 3.53, 2.58, 3.32, 2.92, 3.58, 3.72, 3.61, 3.54, 3.5]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
> `TAK` stanowi nie więcej niż `57%` wszystkich odpowiedzi.
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[46.49, 47.07, 45.42, 50.09, 44.98, 41.83, 41.66, 37.42, 38.24, 41.42, 43.92, 47.77, 48.87, 44.55, 44.58, 48.56, 48.06, 48.6, 44.17, 47.33, 36.55, 48.36, 45.11, 45.51, 47.91, 48.92, 47.03, 42.55, 41.88, 46.1]`
* `A = [56.7, 55.7, 48.4, 59.2, 49.4, 52.6, 64.3, 32.0, 60.4, 47.2, 23.8, 49.2, 28.0, 65.3]`
* `B = [60.4, 57.3, 65.6, 46.9, 60.1, 64.1, 49.9, 64.9, 76.5]`
Po podaniu leku XYZ wyniki były następujące:
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[48.47, 51.16, 47.22, 52.77, 36.71, 36.36, 34.83, 30.5, 33.61, 36.46, 38.26, 50.07, 48.66, 47.7, 49.06, 51.91, 53.17, 49.29, 39.21, 50.99, 32.04, 49.95, 47.77, 48.33, 47.77, 53.41, 52.11, 36.25, 32.71, 49.93]`
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 11 kobiet i 19 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[41.66, 43.92, 41.88, 42.55, 44.98, 38.24, 44.17, 41.42, 36.55, 41.83, 37.42]`
- po: `[34.83, 38.26, 32.71, 36.25, 36.71, 33.61, 39.21, 36.46, 32.04, 36.36, 30.5]`
* Mężczyźni:
- przed: `[48.92, 47.07, 46.49, 48.06, 44.55, 47.03, 47.77, 45.11, 47.91, 50.09, 47.33, 44.58, 46.1, 48.56, 48.87, 48.36, 48.6, 45.42, 45.51]`
- po: `[53.41, 51.16, 48.47, 53.17, 47.7, 52.11, 50.07, 47.77, 47.77, 52.77, 50.99, 49.06, 49.93, 51.91, 48.66, 49.95, 49.29, 47.22, 48.33]`
Co teraz można powiedzieć o skuteczności leku XYZ?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Prowadzimy badania na szczurach.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+9.1 %` wagi,
* `+11.9 %` większa wariancja wagi.
Zdefiniować czym jest cytat, parafraza, plagiat.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik.
Dysponujesz już pomiarami wag grupy kontrolnej:
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
wagi = `[278, 289, 327, 221, 314, 271, 195, 277, 208, 330, 282, 267, 308, 216, 281, 300, 231, 304]`
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `29` zawodowych sportowców;
* `24` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

134
433404.md
View File

@ -3,90 +3,90 @@ ID_testu: 433404
**Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
Naukowcy postanowili odpowiedzieć na pytanie:
`[133, 148, 100, 107, 110, 68, 112, 106, 63, 139, 114, 176, 107, 55, 105, 118, 148, 138, 103, 63, 87, 97, 108]`
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 0, 0, 0, 1, 0, 0, 1, 1, 0]
Student 02 : [1, 0, 1, 0, 0, 1, 1, 0, 1, 0]
Student 03 : [1, 0, 0, 1, 0, 1, 0, 0, 1, 0]
Student 04 : [1, 1, 1, 0, 0, 1, 1, 0, 0, 0]
Student 05 : [0, 1, 0, 0, 1, 1, 1, 1, 0, 0]
Student 06 : [1, 0, 1, 1, 1, 1, 0, 1, 1, 0]
Student 07 : [0, 1, 1, 1, 0, 0, 0, 0, 1, 1]
Student 08 : [0, 0, 1, 0, 1, 1, 0, 0, 0, 0]
Student 09 : [1, 1, 0, 0, 1, 0, 0, 1, 1, 0]
Student 10 : [1, 0, 1, 0, 1, 1, 1, 0, 1, 1]
Student 11 : [0, 1, 1, 1, 1, 0, 0, 1, 0, 0]
Student 12 : [0, 1, 1, 0, 1, 1, 0, 0, 1, 1]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 0, 0, 0, 1, 0, 0, 1, 1, 0]
Prowadzący 02 : [1, 0, 1, 0, 0, 1, 1, 0, 1, 0]
Prowadzący 03 : [1, 0, 0, 1, 0, 1, 0, 0, 1, 0]
Prowadzący 04 : [1, 1, 1, 0, 0, 1, 1, 0, 0, 0]
Prowadzący 05 : [0, 1, 0, 0, 1, 1, 1, 1, 0, 0]
Prowadzący 06 : [1, 0, 1, 1, 1, 1, 0, 1, 1, 0]
Prowadzący 07 : [0, 1, 1, 1, 0, 0, 0, 0, 1, 1]
Prowadzący 08 : [0, 0, 1, 0, 1, 1, 0, 0, 0, 0]
Prowadzący 09 : [1, 1, 0, 0, 1, 0, 0, 1, 1, 0]
Prowadzący 10 : [1, 0, 1, 0, 1, 1, 1, 0, 1, 1]
Prowadzący 11 : [0, 1, 1, 1, 1, 0, 0, 1, 0, 0]
Prowadzący 12 : [0, 1, 1, 0, 1, 1, 0, 0, 1, 1]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A.
Z pól po lewej stronie drogi zebrano
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `36%` wszystkich odpowiedzi.
`[3.39, 3.58, 2.94, 3.04, 3.07, 2.51, 3.11, 3.03, 2.46, 3.47, 3.13]`
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
[kg groszku]. Zbiór z pól po prawej stronie zaowocował
`[5.17, 3.56, 2.35, 3.53, 3.82, 4.51, 4.29, 3.46, 2.53, 3.1, 3.32, 3.58, 3.46, 2.63, 3.74]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[2.73, 3.67, 3.33, 3.87, 2.89, 3.9, 3.73, 2.8, 3.18, 3.36, 3.01, 4.39, 3.42, 3.27, 3.15]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
> `TAK` stanowi nie więcej niż `36%` wszystkich odpowiedzi.
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[47.17, 46.62, 48.75, 46.9, 45.61, 47.06, 44.96, 42.46, 44.54, 38.97, 47.47, 47.13, 42.67, 42.27, 42.17, 41.64, 50.57, 44.41, 48.7, 49.17, 44.93, 46.15, 47.68, 46.92]`
* `A = [36.6, 48.5, 61.6, 67.3, 48.3, 51.3, 52.2, 35.4, 53.2, 50.8, 33.7, 64.0, 53.8, 78.6]`
* `B = [60.7, 46.9, 60.3, 63.6, 71.6, 69.0, 59.6, 48.9, 55.5]`
Po podaniu leku XYZ wyniki były następujące:
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[54.97, 48.03, 50.16, 47.04, 39.44, 50.85, 49.81, 36.22, 52.0, 35.41, 50.32, 49.28, 34.63, 37.43, 38.26, 33.1, 54.36, 35.25, 51.4, 52.03, 47.73, 48.92, 50.91, 51.89]`
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 8 kobiet i 16 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[44.41, 45.61, 41.64, 42.27, 42.46, 38.97, 42.67, 42.17]`
- po: `[35.25, 39.44, 33.1, 37.43, 36.22, 35.41, 34.63, 38.26]`
* Mężczyźni:
- przed: `[44.96, 48.75, 47.47, 50.57, 47.13, 44.54, 47.06, 47.68, 49.17, 48.7, 46.92, 44.93, 46.15, 46.62, 47.17, 46.9]`
- po: `[49.81, 50.16, 50.32, 54.36, 49.28, 52.0, 50.85, 50.91, 52.03, 51.4, 51.89, 47.73, 48.92, 48.03, 54.97, 47.04]`
Co teraz można powiedzieć o skuteczności leku XYZ?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Prowadzimy badania na szczurach.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+5.8 %` wagi,
* `+17.2 %` większa wariancja wagi.
Zdefiniować czym jest cytat, parafraza, plagiat.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik.
Dysponujesz już pomiarami wag grupy kontrolnej:
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
wagi = `[276, 283, 285, 247, 287, 282, 243, 312, 289, 344, 282, 236, 281, 292, 319, 311, 279, 243, 265, 273, 283, 278, 246, 289, 249]`
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `26` zawodowych sportowców;
* `21` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

126
433469.md
View File

@ -3,78 +3,92 @@ ID_testu: 433469
**Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
Naukowcy postanowili odpowiedzieć na pytanie:
`[67, 121, 101, 112, 85, 98, 144, 65, 137, 107, 83, 90, 111, 103, 128, 63, 81, 109, 111, 114]`
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [0, 0, 0, 0, 0, 1, 1, 1, 0, 0]
Student 02 : [1, 0, 0, 1, 0, 1, 0, 0, 0, 1]
Student 03 : [1, 1, 1, 1, 1, 1, 1, 1, 0, 0]
Student 04 : [0, 1, 1, 1, 1, 1, 0, 0, 1, 0]
Student 05 : [1, 0, 1, 0, 0, 0, 1, 1, 0, 1]
Student 06 : [1, 1, 1, 1, 1, 1, 0, 1, 0, 1]
Student 07 : [1, 0, 1, 0, 1, 1, 1, 1, 0, 1]
Student 08 : [0, 1, 1, 1, 1, 1, 0, 1, 0, 0]
Student 09 : [0, 0, 1, 1, 1, 1, 1, 0, 1, 1]
Student 10 : [1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
Student 11 : [1, 0, 0, 1, 1, 0, 1, 1, 1, 1]
Student 12 : [0, 0, 1, 1, 1, 0, 0, 1, 1, 0]
Student 13 : [0, 0, 0, 0, 1, 1, 0, 1, 1, 1]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [0, 0, 0, 0, 0, 1, 1, 1, 0, 0]
Prowadzący 02 : [1, 0, 0, 1, 0, 1, 0, 0, 0, 1]
Prowadzący 03 : [1, 1, 1, 1, 1, 1, 1, 1, 0, 0]
Prowadzący 04 : [0, 1, 1, 1, 1, 1, 0, 0, 1, 0]
Prowadzący 05 : [1, 0, 1, 0, 0, 0, 1, 1, 0, 1]
Prowadzący 06 : [1, 1, 1, 1, 1, 1, 0, 1, 0, 1]
Prowadzący 07 : [1, 0, 1, 0, 1, 1, 1, 1, 0, 1]
Prowadzący 08 : [0, 1, 1, 1, 1, 1, 0, 1, 0, 0]
Prowadzący 09 : [0, 0, 1, 1, 1, 1, 1, 0, 1, 1]
Prowadzący 10 : [1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
Prowadzący 11 : [1, 0, 0, 1, 1, 0, 1, 1, 1, 1]
Prowadzący 12 : [0, 0, 1, 1, 1, 0, 0, 1, 1, 0]
Prowadzący 13 : [0, 0, 0, 0, 1, 1, 0, 1, 1, 1]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A.
Z pól po lewej stronie drogi zebrano
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `41%` wszystkich odpowiedzi.
`[2.53, 3.25, 2.99, 3.13, 2.77, 2.94, 3.56, 2.51, 3.46, 3.07, 2.75, 2.84, 3.11, 3.01, 3.35]`
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
[kg groszku]. Zbiór z pól po prawej stronie zaowocował
`[2.59, 3.01, 3.66, 3.71, 3.77, 3.26, 5.1, 3.19, 4.36, 4.69, 4.34, 3.2, 4.85, 3.54, 2.91]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.98, 2.94, 2.66, 3.48, 3.72, 3.86, 3.27, 3.33, 2.85, 3.99, 2.69, 3.21, 2.96, 3.28, 3.47]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
> `TAK` stanowi nie więcej niż `41%` wszystkich odpowiedzi.
**Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 20 meczy każdej z drużn skończyły się następującymi wynikami:
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* ABC vs ???:
`0:2, 2:2, 1:2, 2:0, 1:2, 2:0, 2:1, 2:1, 3:3, 3:2, 0:1, 2:2, 2:1, 1:3, 1:2, 2:2, 3:3, 2:1, 0:0, 0:2`
* `A = [41.3, 43.6, 36.0, 57.4, 49.6, 54.0, 43.2, 48.3, 66.8, 35.2, 63.8, 52.0, 42.4, 45.1]`
* `B = [62.3, 60.2, 67.0, 49.6, 54.4, 61.8, 62.4, 63.1, 57.3]`
* XYZ vs ???:
`4:2, 4:4, 3:2, 1:3, 2:4, 4:4, 3:1, 3:5, 3:4, 2:2, 6:3, 5:3, 1:6, 2:4, 3:3, 3:4, 3:2, 1:3, 1:2, 8:1`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać?
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Prowadzimy badania na szczurach.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+6.5 %` wagi,
* `+17.4 %` większa wariancja wagi.
Zdefiniować czym jest cytat, parafraza, plagiat.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik.
Dysponujesz już pomiarami wag grupy kontrolnej:
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
wagi = `[279, 293, 258, 274, 335, 232, 325, 286, 255, 264, 291, 281, 314, 229, 253, 289, 292, 295, 267, 369, 263, 328, 346, 327, 263]`
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `30` zawodowych sportowców;
* `23` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

137
433472.md
View File

@ -3,89 +3,96 @@ ID_testu: 433472
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Naukowcy postanowili odpowiedzieć na pytanie:
Uczestnicy zaraportowali następujące poziomy bólu:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[4, 6, 2, 8, 4, 7, 6, 8, 6, 4, 1, 6, 7, 6, 4, 3, 3, 6]`
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Grupa testowa: `[4, 9, 0, 2, 6, 1, 2, 4, 3, 4, 4, 3, 6, 4, 3, 5, 0, 4, 7]`
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 1, 1, 0, 1, 1, 0, 1, 0, 0]
Student 02 : [1, 1, 0, 1, 1, 1, 1, 1, 0, 0]
Student 03 : [0, 1, 1, 1, 0, 1, 0, 1, 0, 0]
Student 04 : [0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
Student 05 : [1, 1, 1, 0, 1, 0, 1, 1, 1, 0]
Student 06 : [0, 1, 1, 0, 0, 0, 0, 1, 0, 1]
Student 07 : [1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Student 08 : [0, 0, 0, 0, 0, 1, 1, 0, 1, 0]
Student 09 : [0, 1, 1, 1, 1, 1, 1, 0, 1, 1]
Student 10 : [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]
Student 11 : [1, 0, 0, 1, 0, 0, 1, 1, 1, 1]
Student 12 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
Student 13 : [0, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Student 14 : [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
Student 15 : [1, 1, 1, 1, 0, 1, 0, 0, 0, 0]
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 1, 1, 0, 1, 1, 0, 1, 0, 0]
Prowadzący 02 : [1, 1, 0, 1, 1, 1, 1, 1, 0, 0]
Prowadzący 03 : [0, 1, 1, 1, 0, 1, 0, 1, 0, 0]
Prowadzący 04 : [0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
Prowadzący 05 : [1, 1, 1, 0, 1, 0, 1, 1, 1, 0]
Prowadzący 06 : [0, 1, 1, 0, 0, 0, 0, 1, 0, 1]
Prowadzący 07 : [1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Prowadzący 08 : [0, 0, 0, 0, 0, 1, 1, 0, 1, 0]
Prowadzący 09 : [0, 1, 1, 1, 1, 1, 1, 0, 1, 1]
Prowadzący 10 : [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]
Prowadzący 11 : [1, 0, 0, 1, 0, 0, 1, 1, 1, 1]
Prowadzący 12 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
Prowadzący 13 : [0, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Prowadzący 14 : [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
Prowadzący 15 : [1, 1, 1, 1, 0, 1, 0, 0, 0, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw.
Na pola wyszło 4 grup studentów.
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `51%` wszystkich odpowiedzi.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy:
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
`[11.0, 20.3, 2.0, 3.0, 11.9, 2.0, 2.1, 6.8, 3.5, 10.1, 11.9, 4.5, 14.5]`
`[8.4, 5.8, 13.0, 2.0, 7.0, 17.5, 12.5, 9.2, 9.7, 13.7, 5.5, 19.5, 11.1]`
`[13.0, 11.2, 21.2, 13.1, 4.8, 10.1, 12.2, 14.9, 11.4, 7.2, 5.6, 10.2, 10.8]`
`[10.0, 15.9, 5.9, 5.5, 11.7, 17.7, 19.4, 7.9, 9.2, 9.4, 4.4, 6.9, 8.7]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[15.3, 10.4, 15.0, 6.5, 16.6, 13.8, 14.6, 17.9, 11.7, 12.1, 12.7, 15.3, 12.8]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
> `TAK` stanowi nie więcej niż `51%` wszystkich odpowiedzi.
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[43.53, 48.12, 45.45, 37.1, 42.5, 46.52, 38.49, 42.93, 46.75, 38.77, 45.65, 42.03, 47.89, 47.9, 46.92, 46.09, 42.97, 47.37, 47.17, 40.42, 50.36, 37.65, 49.86, 48.34, 49.26, 47.34, 38.04, 45.75, 47.76, 45.36, 47.92]`
* `A = [50.7, 46.8, 52.4, 74.8, 29.1, 33.1, 54.5, 26.5, 31.0, 42.4, 34.5, 50.1, 54.7, 36.9]`
* `B = [67.1, 57.5, 53.3, 64.8, 41.5, 55.1, 72.1, 64.0, 58.7]`
Po podaniu leku XYZ wyniki były następujące:
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[46.27, 52.91, 48.24, 29.76, 36.15, 52.85, 33.27, 35.36, 49.5, 32.97, 47.81, 38.1, 53.27, 50.42, 48.93, 49.06, 34.9, 51.34, 40.98, 34.68, 54.96, 33.96, 54.59, 52.41, 50.46, 47.65, 32.43, 52.72, 49.86, 46.72, 53.98]`
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 11 kobiet i 20 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[42.5, 47.17, 37.65, 38.49, 42.93, 37.1, 38.04, 40.42, 38.77, 42.03, 42.97]`
- po: `[36.15, 40.98, 33.96, 33.27, 35.36, 29.76, 32.43, 34.68, 32.97, 38.1, 34.9]`
* Mężczyźni:
- przed: `[45.36, 48.34, 46.52, 45.75, 47.9, 43.53, 46.09, 49.26, 47.76, 46.75, 46.92, 48.12, 45.65, 49.86, 47.34, 47.89, 47.37, 50.36, 47.92, 45.45]`
- po: `[46.72, 52.41, 52.85, 52.72, 50.42, 46.27, 49.06, 50.46, 49.86, 49.5, 48.93, 52.91, 47.81, 54.59, 47.65, 53.27, 51.34, 54.96, 53.98, 48.24]`
Co teraz można powiedzieć o skuteczności leku XYZ?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Prowadzimy badania na szczurach.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+8.1 %` wagi,
* `+11.5 %` większa wariancja wagi.
Zdefiniować czym jest cytat, parafraza, plagiat.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik.
Dysponujesz już pomiarami wag grupy kontrolnej:
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
wagi = `[233, 242, 290, 227, 237, 263, 245, 280, 290, 250, 304, 271, 257, 296, 218, 264, 321, 294, 276]`
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `19` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

110
433476.md
View File

@ -3,70 +3,84 @@ ID_testu: 433476
**Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
Naukowcy postanowili odpowiedzieć na pytanie:
`[83, 96, 57, 120, 63, 119, 36, 121, 92, 94, 83, 76, 76, 109, 105, 90, 96, 73, 136, 134, 106, 106, 115, 129, 71, 125, 90, 90, 46]`
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [0, 1, 0, 0, 0, 1, 0, 0, 0, 0]
Student 02 : [0, 1, 0, 0, 0, 0, 1, 1, 1, 0]
Student 03 : [0, 0, 0, 1, 0, 0, 0, 1, 1, 0]
Student 04 : [0, 0, 0, 0, 1, 1, 1, 1, 1, 0]
Student 05 : [0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
Student 06 : [0, 1, 1, 0, 1, 0, 0, 1, 0, 0]
Student 07 : [0, 0, 0, 0, 1, 1, 0, 1, 0, 1]
Student 08 : [1, 0, 1, 0, 1, 1, 0, 1, 0, 0]
Student 09 : [0, 1, 1, 0, 0, 1, 0, 1, 1, 0]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [0, 1, 0, 0, 0, 1, 0, 0, 0, 0]
Prowadzący 02 : [0, 1, 0, 0, 0, 0, 1, 1, 1, 0]
Prowadzący 03 : [0, 0, 0, 1, 0, 0, 0, 1, 1, 0]
Prowadzący 04 : [0, 0, 0, 0, 1, 1, 1, 1, 1, 0]
Prowadzący 05 : [0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
Prowadzący 06 : [0, 1, 1, 0, 1, 0, 0, 1, 0, 0]
Prowadzący 07 : [0, 0, 0, 0, 1, 1, 0, 1, 0, 1]
Prowadzący 08 : [1, 0, 1, 0, 1, 1, 0, 1, 0, 0]
Prowadzący 09 : [0, 1, 1, 0, 0, 1, 0, 1, 1, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw.
Na pola wyszło 4 grup studentów.
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `21%` wszystkich odpowiedzi.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy:
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
`[5.9, 8.1, 2.0, 12.2, 2.7, 12.0, 2.0, 12.4, 7.6, 7.9, 6.1, 4.8]`
`[4.8, 10.4, 9.6, 7.1, 8.2, 4.4, 14.9, 14.4, 9.8, 9.9, 11.4, 13.7]`
`[4.0, 12.9, 7.2, 7.3, 2.0, 16.8, 7.3, 8.2, 11.8, 10.6, 12.6, 18.2]`
`[2.0, 4.7, 19.6, 13.1, 12.0, 5.9, 8.1, 11.2, 13.0, 7.9, 17.1, 15.4]`
1. Czy pojedynczy student który zebrał `10.9` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[11.0, 9.7, 16.6, 8.6, 15.9, 11.8, 8.6, 10.5, 8.6, 9.8, 10.4, 10.8]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
> `TAK` stanowi nie więcej niż `21%` wszystkich odpowiedzi.
**Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 16 meczy każdej z drużn skończyły się następującymi wynikami:
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* ABC vs ???:
`2:1, 0:3, 2:2, 4:2, 1:2, 1:4, 0:3, 1:1, 1:2, 1:0, 1:1, 1:1, 1:1, 4:1, 2:1, 1:0`
* `A = [21.7, 31.1, 40.2, 45.5, 30.2, 55.4, 32.5, 54.8, 21.5, 55.7, 44.2, 45.0, 40.6, 37.6]`
* `B = [51.7, 60.6, 59.4, 55.4, 57.1, 51.1, 67.9, 67.1, 59.7]`
* XYZ vs ???:
`1:4, 0:6, 4:4, 4:5, 4:1, 3:3, 0:5, 5:2, 4:1, 4:4, 4:4, 2:3, 3:4, 1:4, 0:4, 4:4`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać?
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując).
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
Zdefiniować czym jest cytat, parafraza, plagiat.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `44` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `28` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `494` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `259` wyniki. Co mówi to o jego zdolnościach?
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `16` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

133
433479.md
View File

@ -3,89 +3,92 @@ ID_testu: 433479
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Naukowcy postanowili odpowiedzieć na pytanie:
Uczestnicy zaraportowali następujące poziomy bólu:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[6, 6, 4, 8, 5, 7, 7, 6, 1, 3, 3, 2, 6, 6, 6, 3, 7, 8, 7]`
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Grupa testowa: `[2, 3, 1, 4, 6, 3, 5, 8, 3, 3, 6, 6, 8, 5, 7, 7, 2, 3, 7, 1]`
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [0, 1, 0, 0, 1, 0, 1, 1, 0, 1]
Student 02 : [0, 1, 0, 1, 1, 1, 1, 0, 1, 1]
Student 03 : [1, 1, 0, 0, 0, 0, 0, 0, 1, 1]
Student 04 : [0, 1, 0, 1, 0, 0, 0, 1, 0, 1]
Student 05 : [0, 0, 0, 0, 0, 1, 0, 1, 1, 0]
Student 06 : [1, 0, 0, 0, 0, 1, 0, 1, 1, 1]
Student 07 : [0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
Student 08 : [1, 0, 1, 0, 1, 1, 0, 0, 0, 1]
Student 09 : [0, 1, 1, 0, 0, 0, 1, 0, 1, 0]
Student 10 : [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
Student 11 : [1, 1, 0, 1, 1, 1, 1, 0, 0, 0]
Student 12 : [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]
Student 13 : [1, 0, 1, 0, 0, 1, 1, 1, 0, 0]
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [0, 1, 0, 0, 1, 0, 1, 1, 0, 1]
Prowadzący 02 : [0, 1, 0, 1, 1, 1, 1, 0, 1, 1]
Prowadzący 03 : [1, 1, 0, 0, 0, 0, 0, 0, 1, 1]
Prowadzący 04 : [0, 1, 0, 1, 0, 0, 0, 1, 0, 1]
Prowadzący 05 : [0, 0, 0, 0, 0, 1, 0, 1, 1, 0]
Prowadzący 06 : [1, 0, 0, 0, 0, 1, 0, 1, 1, 1]
Prowadzący 07 : [0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
Prowadzący 08 : [1, 0, 1, 0, 1, 1, 0, 0, 0, 1]
Prowadzący 09 : [0, 1, 1, 0, 0, 0, 1, 0, 1, 0]
Prowadzący 10 : [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
Prowadzący 11 : [1, 1, 0, 1, 1, 1, 1, 0, 0, 0]
Prowadzący 12 : [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]
Prowadzący 13 : [1, 0, 1, 0, 0, 1, 1, 1, 0, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A.
Z pól po lewej stronie drogi zebrano
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `70%` wszystkich odpowiedzi.
`[2.42, 2.83, 2.38, 2.7, 3.38, 2.8, 3.2, 3.71, 2.84, 2.82, 3.37, 3.2]`
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
[kg groszku]. Zbiór z pól po prawej stronie zaowocował
`[4.03, 3.6, 4.76, 3.84, 2.83, 3.32, 4.07, 2.32, 4.13, 2.79, 3.3, 3.55, 2.74, 3.95, 3.46]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.46, 3.9, 2.71, 2.35, 2.71, 2.97, 2.62, 3.35, 3.47, 3.56, 2.8, 3.55, 4.05, 3.78, 3.81]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
> `TAK` stanowi nie więcej niż `70%` wszystkich odpowiedzi.
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[48.36, 46.43, 45.38, 38.14, 46.31, 40.93, 44.47, 47.74, 45.57, 40.15, 49.69, 46.57, 48.38, 46.62, 47.12, 47.2, 38.36, 41.0, 45.47, 40.76, 43.25, 47.73, 48.22, 44.38, 48.13]`
* `A = [69.6, 45.1, 32.5, 44.8, 31.5, 41.1, 61.4, 44.1, 56.0, 71.3, 45.2, 44.5, 61.0, 55.9]`
* `B = [66.0, 61.1, 74.4, 63.9, 52.4, 58.0, 66.5, 46.5, 67.3]`
Po podaniu leku XYZ wyniki były następujące:
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[49.27, 38.14, 48.51, 33.06, 49.73, 34.68, 49.0, 52.1, 50.79, 36.54, 56.16, 48.43, 52.43, 49.1, 48.22, 51.51, 33.89, 32.15, 49.29, 30.84, 34.41, 52.98, 49.31, 35.37, 49.48]`
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 9 kobiet i 16 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[38.36, 40.93, 38.14, 40.15, 44.38, 40.76, 43.25, 46.43, 41.0]`
- po: `[33.89, 34.68, 33.06, 36.54, 35.37, 30.84, 34.41, 38.14, 32.15]`
* Mężczyźni:
- przed: `[46.31, 48.38, 47.74, 48.13, 47.2, 49.69, 47.73, 45.57, 46.62, 48.22, 44.47, 48.36, 45.47, 46.57, 47.12, 45.38]`
- po: `[49.73, 52.43, 52.1, 49.48, 51.51, 56.16, 52.98, 50.79, 49.1, 49.31, 49.0, 49.27, 49.29, 48.43, 48.22, 48.51]`
Co teraz można powiedzieć o skuteczności leku XYZ?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując).
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
Zdefiniować czym jest cytat, parafraza, plagiat.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `53` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `30` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `548` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `277` wyniki. Co mówi to o jego zdolnościach?
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `17` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

138
433480.md
View File

@ -3,88 +3,98 @@ ID_testu: 433480
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Naukowcy postanowili odpowiedzieć na pytanie:
Uczestnicy zaraportowali następujące poziomy bólu:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[2, 4, 3, 4, 4, 7, 8, 3, 10, 4, 4, 5, 4, 4, 6, 7, 3, 4, 5, 8, 6, 0]`
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Grupa testowa: `[7, 4, 4, 7, 4, 7, 4, 7, 2, 0, 5, 3, 8, 6, 7, 3, 4, 6, 9]`
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [0, 1, 1, 0, 0, 1, 1, 0, 1, 1]
Student 02 : [0, 1, 0, 1, 0, 0, 0, 1, 1, 1]
Student 03 : [0, 1, 0, 0, 0, 1, 0, 1, 1, 1]
Student 04 : [0, 0, 0, 1, 0, 0, 1, 0, 0, 1]
Student 05 : [0, 1, 1, 1, 1, 1, 1, 0, 1, 0]
Student 06 : [0, 1, 1, 1, 1, 1, 0, 0, 1, 1]
Student 07 : [1, 1, 0, 1, 1, 1, 1, 1, 1, 0]
Student 08 : [1, 0, 0, 0, 0, 0, 1, 1, 0, 1]
Student 09 : [0, 1, 1, 0, 1, 0, 0, 0, 1, 0]
Student 10 : [1, 0, 1, 0, 1, 0, 0, 0, 1, 0]
Student 11 : [0, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Student 12 : [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
Student 13 : [0, 0, 0, 1, 0, 0, 1, 0, 0, 0]
Student 14 : [1, 0, 1, 1, 0, 1, 1, 1, 1, 0]
Student 15 : [1, 0, 0, 0, 0, 1, 1, 0, 0, 1]
Student 16 : [0, 1, 0, 1, 0, 1, 0, 0, 1, 0]
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [0, 1, 1, 0, 0, 1, 1, 0, 1, 1]
Prowadzący 02 : [0, 1, 0, 1, 0, 0, 0, 1, 1, 1]
Prowadzący 03 : [0, 1, 0, 0, 0, 1, 0, 1, 1, 1]
Prowadzący 04 : [0, 0, 0, 1, 0, 0, 1, 0, 0, 1]
Prowadzący 05 : [0, 1, 1, 1, 1, 1, 1, 0, 1, 0]
Prowadzący 06 : [0, 1, 1, 1, 1, 1, 0, 0, 1, 1]
Prowadzący 07 : [1, 1, 0, 1, 1, 1, 1, 1, 1, 0]
Prowadzący 08 : [1, 0, 0, 0, 0, 0, 1, 1, 0, 1]
Prowadzący 09 : [0, 1, 1, 0, 1, 0, 0, 0, 1, 0]
Prowadzący 10 : [1, 0, 1, 0, 1, 0, 0, 0, 1, 0]
Prowadzący 11 : [0, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Prowadzący 12 : [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
Prowadzący 13 : [0, 0, 0, 1, 0, 0, 1, 0, 0, 0]
Prowadzący 14 : [1, 0, 1, 1, 0, 1, 1, 1, 1, 0]
Prowadzący 15 : [1, 0, 0, 0, 0, 1, 1, 0, 0, 1]
Prowadzący 16 : [0, 1, 0, 1, 0, 1, 0, 0, 1, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw.
Na pola wyszło 5 grup studentów.
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `66%` wszystkich odpowiedzi.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy:
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
`[12.6, 12.2, 6.8, 16.4, 9.5, 14.8, 13.6, 17.8]`
`[7.3, 2.0, 7.5, 11.6, 20.2, 11.7, 15.1, 8.5]`
`[9.6, 9.8, 17.1, 17.2, 3.2, 5.8, 7.0, 7.7]`
`[9.0, 4.3, 18.0, 14.9, 3.3, 18.9, 4.1, 11.1]`
`[12.5, 13.9, 6.5, 13.3, 10.6, 3.2, 9.0, 13.4]`
1. Czy pojedynczy student który zebrał `12.4` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[10.4, 5.2, 8.8, 6.4, 5.5, 18.6, 19.2, 10.7]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
> `TAK` stanowi nie więcej niż `66%` wszystkich odpowiedzi.
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[46.7, 46.11, 49.15, 45.3, 41.74, 49.4, 47.49, 44.36, 44.95, 46.26, 43.28, 40.42, 46.89, 46.54, 40.64, 47.51, 48.54, 45.19, 46.93, 43.78, 44.4, 45.75, 45.9, 43.11, 50.07, 46.32, 49.12]`
* `A = [65.1, 38.7, 56.1, 55.3, 42.4, 65.3, 48.7, 61.5, 58.5, 68.7, 43.5, 28.8, 44.1, 53.9]`
* `B = [76.4, 62.7, 68.2, 57.6, 59.4, 59.6, 71.3, 71.4, 49.1]`
Po podaniu leku XYZ wyniki były następujące:
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[49.88, 44.73, 55.66, 50.03, 35.92, 51.12, 50.43, 47.72, 51.46, 46.77, 38.74, 37.92, 48.3, 46.13, 35.87, 54.59, 50.91, 36.05, 47.15, 38.76, 38.74, 48.07, 37.63, 33.95, 54.94, 50.05, 49.07]`
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 9 kobiet i 18 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[43.28, 43.11, 40.42, 45.19, 41.74, 44.4, 43.78, 45.9, 40.64]`
- po: `[38.74, 33.95, 37.92, 36.05, 35.92, 38.74, 38.76, 37.63, 35.87]`
* Mężczyźni:
- przed: `[44.36, 46.26, 47.49, 50.07, 47.51, 48.54, 46.54, 46.89, 46.93, 49.12, 49.15, 44.95, 45.75, 46.11, 46.32, 46.7, 45.3, 49.4]`
- po: `[47.72, 46.77, 50.43, 54.94, 54.59, 50.91, 46.13, 48.3, 47.15, 49.07, 55.66, 51.46, 48.07, 44.73, 50.05, 49.88, 50.03, 51.12]`
Co teraz można powiedzieć o skuteczności leku XYZ?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując).
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
Zdefiniować czym jest cytat, parafraza, plagiat.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `55` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `24` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `595` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `310` wyniki. Co mówi to o jego zdolnościach?
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `17` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.