add evaluation
This commit is contained in:
parent
4de73a4a11
commit
273f20e2a5
38
NLU_lab_7-8/evaluation.txt
Normal file
38
NLU_lab_7-8/evaluation.txt
Normal file
@ -0,0 +1,38 @@
|
||||
*** This evaluation file was generated automatically by the training script ***
|
||||
|
||||
Results:
|
||||
- F-score (micro) 0.2609
|
||||
- F-score (macro) 0.1509
|
||||
- Accuracy 0.1648
|
||||
|
||||
By class:
|
||||
precision recall f1-score support
|
||||
|
||||
quantity 0.3846 0.8333 0.5263 6
|
||||
time 0.3333 0.4286 0.3750 7
|
||||
title 0.3333 0.2222 0.2667 9
|
||||
goal 0.0000 0.0000 0.0000 10
|
||||
area 0.0000 0.0000 0.0000 3
|
||||
name 0.7500 0.6000 0.6667 5
|
||||
date 0.3333 0.3333 0.3333 3
|
||||
interval 0.0000 0.0000 0.0000 1
|
||||
seat 0.0000 0.0000 0.0000 3
|
||||
ticketnumber 0.0000 0.0000 0.0000 3
|
||||
e-mail 0.0000 0.0000 0.0000 3
|
||||
phone 1.0000 1.0000 1.0000 1
|
||||
row 0.0000 0.0000 0.0000 2
|
||||
movie 0.0000 0.0000 0.0000 2
|
||||
reducedQuantity 0.0000 0.0000 0.0000 2
|
||||
seats 0.0000 0.0000 0.0000 0
|
||||
purchaseType 0.0000 0.0000 0.0000 1
|
||||
bankAccountNumber 0.0000 0.0000 0.0000 1
|
||||
email 0.0000 0.0000 0.0000 1
|
||||
hour 0.0000 0.0000 0.0000 1
|
||||
seatPlacement 0.0000 0.0000 0.0000 1
|
||||
|
||||
micro avg 0.3000 0.2308 0.2609 65
|
||||
macro avg 0.1493 0.1627 0.1509 65
|
||||
weighted avg 0.2060 0.2308 0.2079 65
|
||||
samples avg 0.1648 0.1648 0.1648 65
|
||||
|
||||
2022-05-02 19:47:10,324 ----------------------------------------------------------------------------------------------------
|
@ -82,4 +82,16 @@ try:
|
||||
except:
|
||||
model = SequenceTagger.load('slot-model-pl/final-model.pt')
|
||||
|
||||
log_file = open('slot-model-pl/training.log', encoding='utf-8')
|
||||
log_lines = log_file.readlines()
|
||||
log_file.close()
|
||||
with open('slot-model-pl/training.log', encoding='utf-8') as log_file, open('evaluation.txt', 'w', encoding='utf-8') \
|
||||
as eval_file:
|
||||
for num, line in enumerate(log_file):
|
||||
if line == 'Results:\n':
|
||||
lines_to_write_start = num
|
||||
eval_file.write('*** This evaluation file was generated automatically by the training script ***\n\n')
|
||||
for line in log_lines[lines_to_write_start:]:
|
||||
eval_file.write(line)
|
||||
|
||||
print(tabulate(predict(model, 'Jeden bilet na imię Jan Kowalski na film Batman'.split())))
|
||||
|
Loading…
Reference in New Issue
Block a user