24 KiB
24 KiB
Ekstrakcja informacji
11. NER RNN [ćwiczenia]
Jakub Pokrywka (2021)
Podejście softmax z embeddingami na przykładzie NER
import numpy as np
import torch
import pandas as pd
from datasets import load_dataset
import torchtext
#from torchtext.vocab import vocab
from collections import Counter
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score
from tqdm.notebook import tqdm
import torch
device = 'cpu'
dataset = load_dataset("conll2003")
Reusing dataset conll2003 (/home/kuba/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/63f4ebd1bcb7148b1644497336fd74643d4ce70123334431a3c053b7ee4e96ee)
0%| | 0/3 [00:00<?, ?it/s]
def build_vocab(dataset):
counter = Counter()
for document in dataset:
counter.update(document)
vocab = torchtext.vocab.vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
vocab.set_default_index(0)
return vocab
vocab = build_vocab(dataset['train']['tokens'])
vocab['on']
21
def data_process(dt):
return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]
def labels_process(dt):
return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]
train_tokens_ids = data_process(dataset['train']['tokens'])
test_tokens_ids = data_process(dataset['test']['tokens'])
validation_tokens_ids = data_process(dataset['validation']['tokens'])
train_labels = labels_process(dataset['train']['ner_tags'])
validation_labels = labels_process(dataset['validation']['ner_tags'])
test_labels = labels_process(dataset['test']['ner_tags'])
train_tokens_ids[0]
tensor([ 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 3])
dataset['train'][0]
{'id': '0', 'tokens': ['EU', 'rejects', 'German', 'call', 'to', 'boycott', 'British', 'lamb', '.'], 'pos_tags': [22, 42, 16, 21, 35, 37, 16, 21, 7], 'chunk_tags': [11, 21, 11, 12, 21, 22, 11, 12, 0], 'ner_tags': [3, 0, 7, 0, 0, 0, 7, 0, 0]}
train_labels[0]
tensor([0, 3, 0, 7, 0, 0, 0, 7, 0, 0, 0])
def get_scores(y_true, y_pred):
acc_score = 0
tp = 0
fp = 0
selected_items = 0
relevant_items = 0
for p,t in zip(y_pred, y_true):
if p == t:
acc_score +=1
if p > 0 and p == t:
tp +=1
if p > 0:
selected_items += 1
if t > 0 :
relevant_items +=1
if selected_items == 0:
precision = 1.0
else:
precision = tp / selected_items
if relevant_items == 0:
recall = 1.0
else:
recall = tp / relevant_items
if precision + recall == 0.0 :
f1 = 0.0
else:
f1 = 2* precision * recall / (precision + recall)
return precision, recall, f1
num_tags = max([max(x) for x in dataset['train']['ner_tags'] if x]) + 1
class LSTM(torch.nn.Module):
def __init__(self):
super(LSTM, self).__init__()
self.emb = torch.nn.Embedding(len(vocab.get_itos()),100)
self.rec = torch.nn.LSTM(100, 256, 1, batch_first = True)
self.fc1 = torch.nn.Linear( 256 , 9)
def forward(self, x):
emb = torch.relu(self.emb(x))
lstm_output, (h_n, c_n) = self.rec(emb)
out_weights = self.fc1(lstm_output)
return out_weights
lstm = LSTM().to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(lstm.parameters())
def eval_model(dataset_tokens, dataset_labels, model):
Y_true = []
Y_pred = []
for i in tqdm(range(len(dataset_labels))):
batch_tokens = dataset_tokens[i].unsqueeze(0).to(device)
tags = list(dataset_labels[i].numpy())
Y_true += tags
Y_batch_pred_weights = model(batch_tokens).squeeze(0)
Y_batch_pred = torch.argmax(Y_batch_pred_weights,1)
Y_pred += list(Y_batch_pred.cpu().numpy())
return get_scores(Y_true, Y_pred)
NUM_EPOCHS = 5
for i in range(NUM_EPOCHS):
lstm.train()
#for i in tqdm(range(5000)):
for i in tqdm(range(len(train_labels))):
batch_tokens = train_tokens_ids[i].unsqueeze(0).to(device)
tags = train_labels[i].unsqueeze(1).to(device)
predicted_tags = lstm(batch_tokens)
optimizer.zero_grad()
loss = criterion(predicted_tags.squeeze(0),tags.squeeze(1))
loss.backward()
optimizer.step()
lstm.eval()
print(eval_model(validation_tokens_ids, validation_labels, lstm))
0%| | 0/14042 [00:00<?, ?it/s]
0%| | 0/3251 [00:00<?, ?it/s]
(0.516575591985428, 0.49447867023131464, 0.505285663380449)
0%| | 0/14042 [00:00<?, ?it/s]
0%| | 0/3251 [00:00<?, ?it/s]
(0.6624173748819642, 0.6523305823549924, 0.6573352855051245)
0%| | 0/14042 [00:00<?, ?it/s]
0%| | 0/3251 [00:00<?, ?it/s]
(0.7022361255937898, 0.7045216784842496, 0.7033770453754206)
0%| | 0/14042 [00:00<?, ?it/s]
0%| | 0/3251 [00:00<?, ?it/s]
(0.7282225874618455, 0.7210275485295827, 0.7246072075229251)
0%| | 0/14042 [00:00<?, ?it/s]
0%| | 0/3251 [00:00<?, ?it/s]
(0.7124554367201426, 0.7433453446472161, 0.7275726719381079)
eval_model(validation_tokens_ids, validation_labels, lstm)
0%| | 0/3251 [00:00<?, ?it/s]
(0.7124554367201426, 0.7433453446472161, 0.7275726719381079)
eval_model(test_tokens_ids, test_labels, lstm)
0%| | 0/3454 [00:00<?, ?it/s]
(0.6445353594389246, 0.6797337278106509, 0.6616667666646667)
len(train_tokens_ids)
14042
pytania
- co zrobić z trenowaniem na batchach > 1 ?
- co zrobić, żeby sieć uwzględniała następne tokeny, a nie tylko poprzednie?
- w jaki sposób wykorzystać taką sieć do zadania zwykłej klasyfikacji?
Zadanie na zajęcia ( 20 minut)
zmodyfikować sieć tak, żeby była używała dwuwarstwowej, dwukierunkowej warstwy GRU oraz dropoutu. Dropout ma nałożony na embeddingi.
class GRU(torch.nn.Module):
def __init__(self):
super(GRU, self).__init__()
self.emb = torch.nn.Embedding(len(vocab.get_itos()),100)
self.dropout = torch.nn.Dropout(0.2)
self.rec = torch.nn.GRU(100, 256, 2, batch_first = True, bidirectional = True)
self.fc1 = torch.nn.Linear(2* 256 , 9)
def forward(self, x):
emb = torch.relu(self.emb(x))
emb = self.dropout(emb)
gru_output, h_n = self.rec(emb)
out_weights = self.fc1(gru_output)
return out_weights
gru = GRU().to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(gru.parameters())
NUM_EPOCHS = 5
for i in range(NUM_EPOCHS):
gru.train()
#for i in tqdm(range(500)):
for i in tqdm(range(len(train_labels))):
batch_tokens = train_tokens_ids[i].unsqueeze(0).to(device)
tags = train_labels[i].unsqueeze(1).to(device)
predicted_tags = gru(batch_tokens)
optimizer.zero_grad()
loss = criterion(predicted_tags.squeeze(0),tags.squeeze(1))
loss.backward()
optimizer.step()
gru.eval()
print(eval_model(validation_tokens_ids, validation_labels, gru))
0%| | 0/14042 [00:00<?, ?it/s]
0%| | 0/3251 [00:00<?, ?it/s]
(0.6109818520241973, 0.4578635359758224, 0.5234551495016612)
0%| | 0/14042 [00:00<?, ?it/s]
0%| | 0/3251 [00:00<?, ?it/s]
(0.6290377039954981, 0.6496570963617343, 0.639181152790485)
0%| | 0/14042 [00:00<?, ?it/s]
0%| | 0/3251 [00:00<?, ?it/s]
(0.6755871725383921, 0.6954550738114611, 0.6853771693682342)
0%| | 0/14042 [00:00<?, ?it/s]
0%| | 0/3251 [00:00<?, ?it/s]
(0.7477821586988664, 0.7054515866558178, 0.7260003588731384)
0%| | 0/14042 [00:00<?, ?it/s]
0%| | 0/3251 [00:00<?, ?it/s]
(0.7669533169533169, 0.725677089387423, 0.745744490234725)
Zadanie domowe
- stworzyć model seq labelling bazujący na sieci neuronowej opisanej w punkcie niżej (można bazować na tym jupyterze lub nie).
- model sieci to GRU (o dowolnych parametrach) + CRF w pytorchu korzystając z modułu CRF z poprzednich zajęć- - stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv
- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.65 termin 22.06, 60 punktów, za najlepszy wynik- 100 punktów