aitech-eks-pub-22/cw/11_NER_RNN_ODPOWIEDZI.ipynb
Jakub Pokrywka 3d85ca4084 11
2022-06-07 14:56:08 +02:00

24 KiB

Logo 1

Ekstrakcja informacji

11. NER RNN [ćwiczenia]

Jakub Pokrywka (2021)

Logo 2

Podejście softmax z embeddingami na przykładzie NER

import numpy as np
import gensim
import torch
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split

from datasets import load_dataset
import torchtext
#from torchtext.vocab import vocab
from collections import Counter

from sklearn.datasets import fetch_20newsgroups
# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score

from tqdm.notebook import tqdm

import torch
dataset = load_dataset("conll2003")
Reusing dataset conll2003 (/home/kuba/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/63f4ebd1bcb7148b1644497336fd74643d4ce70123334431a3c053b7ee4e96ee)
  0%|          | 0/3 [00:00<?, ?it/s]
def build_vocab(dataset):
    counter = Counter()
    for document in dataset:
        counter.update(document)
    vocab = torchtext.vocab.vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
    vocab.set_default_index(0)
    return vocab
vocab = build_vocab(dataset['train']['tokens'])
vocab['on']
21
def data_process(dt):
    return [ torch.tensor([vocab['<bos>']] +[vocab[token]  for token in  document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]
def labels_process(dt):
    return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]
train_tokens_ids = data_process(dataset['train']['tokens'])
test_tokens_ids = data_process(dataset['test']['tokens'])
validation_tokens_ids =  data_process(dataset['validation']['tokens'])
train_labels = labels_process(dataset['train']['ner_tags'])
validation_labels = labels_process(dataset['validation']['ner_tags'])
test_labels = labels_process(dataset['test']['ner_tags'])
train_tokens_ids[0]
tensor([ 2,  4,  5,  6,  7,  8,  9, 10, 11, 12,  3])
dataset['train'][0]
{'id': '0',
 'tokens': ['EU',
  'rejects',
  'German',
  'call',
  'to',
  'boycott',
  'British',
  'lamb',
  '.'],
 'pos_tags': [22, 42, 16, 21, 35, 37, 16, 21, 7],
 'chunk_tags': [11, 21, 11, 12, 21, 22, 11, 12, 0],
 'ner_tags': [3, 0, 7, 0, 0, 0, 7, 0, 0]}
train_labels[0]
tensor([0, 3, 0, 7, 0, 0, 0, 7, 0, 0, 0])
def get_scores(y_true, y_pred):
    acc_score = 0
    tp = 0
    fp = 0
    selected_items = 0
    relevant_items = 0 

    for p,t in zip(y_pred, y_true):
        if p == t:
            acc_score +=1

        if p > 0 and p == t:
            tp +=1

        if p > 0:
            selected_items += 1

        if t > 0 :
            relevant_items +=1

            
            
    if selected_items == 0:
        precision = 1.0
    else:
        precision = tp / selected_items
        
            
    if relevant_items == 0:
        recall = 1.0
    else:
        recall = tp / relevant_items
    
    
    if precision + recall == 0.0 :
        f1 = 0.0
    else:
        f1 = 2* precision * recall  / (precision + recall)

    return precision, recall, f1
num_tags = max([max(x) for x in dataset['train']['ner_tags'] if x]) + 1 
class LSTM(torch.nn.Module):

    def __init__(self):
        super(LSTM, self).__init__()
        self.emb = torch.nn.Embedding(len(vocab.get_itos()),100)
        self.rec = torch.nn.LSTM(100, 256, 1, batch_first = True)
        self.fc1 = torch.nn.Linear( 256 , 9)

    def forward(self, x):
        emb = torch.relu(self.emb(x))
        
        lstm_output, (h_n, c_n) = self.rec(emb)
        
        out_weights = self.fc1(lstm_output)

        return out_weights
lstm = LSTM()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(lstm.parameters())
def eval_model(dataset_tokens, dataset_labels, model):
    Y_true = []
    Y_pred = []
    for i in tqdm(range(len(dataset_labels))):
        batch_tokens = dataset_tokens[i].unsqueeze(0)
        tags = list(dataset_labels[i].numpy())
        Y_true += tags
        
        Y_batch_pred_weights = model(batch_tokens).squeeze(0)
        Y_batch_pred = torch.argmax(Y_batch_pred_weights,1)
        Y_pred += list(Y_batch_pred.numpy())
        

    return get_scores(Y_true, Y_pred)
        
NUM_EPOCHS = 5
for i in range(NUM_EPOCHS):
    lstm.train()
    for i in tqdm(range(500)):
    #for i in tqdm(range(len(train_labels))):
        batch_tokens = train_tokens_ids[i].unsqueeze(0)
        tags = train_labels[i].unsqueeze(1)
        
        
        predicted_tags = lstm(batch_tokens)

        
        optimizer.zero_grad()
        loss  = criterion(predicted_tags.squeeze(0),tags.squeeze(1))
        
        loss.backward()
        optimizer.step()
        
    lstm.eval()
    print(eval_model(validation_tokens_ids, validation_labels, lstm))
  0%|          | 0/500 [00:00<?, ?it/s]
  0%|          | 0/3251 [00:00<?, ?it/s]
(0.2310126582278481, 0.02545623619667558, 0.04585907234844519)
  0%|          | 0/500 [00:00<?, ?it/s]
  0%|          | 0/3251 [00:00<?, ?it/s]
(0.22903453136011276, 0.15111007787980937, 0.1820855802227047)
  0%|          | 0/500 [00:00<?, ?it/s]
  0%|          | 0/3251 [00:00<?, ?it/s]
(0.22289679098005205, 0.20911310008136696, 0.21578505457598657)
  0%|          | 0/500 [00:00<?, ?it/s]
  0%|          | 0/3251 [00:00<?, ?it/s]
(0.2553244180287271, 0.23968383122166687, 0.2472570297979495)
  0%|          | 0/500 [00:00<?, ?it/s]
  0%|          | 0/3251 [00:00<?, ?it/s]
(0.26687507236308905, 0.2679297919330466, 0.26740139211136893)
eval_model(validation_tokens_ids, validation_labels, lstm)
  0%|          | 0/3251 [00:00<?, ?it/s]
(0.26687507236308905, 0.2679297919330466, 0.26740139211136893)
eval_model(test_tokens_ids, test_labels, lstm)
  0%|          | 0/3454 [00:00<?, ?it/s]
(0.2493934363427404, 0.24075443786982248, 0.24499780467916954)
len(train_tokens_ids)
14042

pytania

  • co zrobić z trenowaniem na batchach > 1 ?
  • co zrobić, żeby sieć uwzględniała następne tokeny, a nie tylko poprzednie?
  • w jaki sposób wykorzystać taką sieć do zadania zwykłej klasyfikacji?

Zadanie na zajęcia ( 20 minut)

zmodyfikować sieć tak, żeby była używała dwuwarstwowej, dwukierunkowej warstwy GRU oraz dropoutu. Dropout ma nałożony na embeddingi.

class GRU(torch.nn.Module):

    def __init__(self):
        super(GRU, self).__init__()
        self.emb = torch.nn.Embedding(len(vocab.get_itos()),100)
        self.dropout = torch.nn.Dropout(0.2)
        self.rec = torch.nn.GRU(100, 256, 2, batch_first = True, bidirectional = True)
        self.fc1 = torch.nn.Linear(2* 256 , 9)
        
    def forward(self, x):
        emb = torch.relu(self.emb(x))
        emb = self.dropout(emb)
        
        gru_output, h_n = self.rec(emb)
        
        out_weights = self.fc1(gru_output)

        return out_weights
gru = GRU()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(gru.parameters())
NUM_EPOCHS = 5
for i in range(NUM_EPOCHS):
    gru.train()
    for i in tqdm(range(500)):
    #for i in tqdm(range(len(train_labels))):
        batch_tokens = train_tokens_ids[i].unsqueeze(0)
        tags = train_labels[i].unsqueeze(1)
        
        
        predicted_tags = gru(batch_tokens)

        
        optimizer.zero_grad()
        loss = criterion(predicted_tags.squeeze(0),tags.squeeze(1))
        
        loss.backward()
        optimizer.step()
        
        
    gru.eval()
    print(eval_model(validation_tokens_ids, validation_labels, gru))
  0%|          | 0/500 [00:00<?, ?it/s]
  0%|          | 0/3251 [00:00<?, ?it/s]
(0.38776758409785933, 0.14739044519353714, 0.2135938684410006)
  0%|          | 0/500 [00:00<?, ?it/s]
  0%|          | 0/3251 [00:00<?, ?it/s]
(0.27651183172655563, 0.22003952109729163, 0.24506440546313676)
  0%|          | 0/500 [00:00<?, ?it/s]
  0%|          | 0/3251 [00:00<?, ?it/s]
(0.31285223367697595, 0.2645588748111124, 0.28668598060209094)
  0%|          | 0/500 [00:00<?, ?it/s]
  0%|          | 0/3251 [00:00<?, ?it/s]
(0.2596728376922323, 0.3081483203533651, 0.2818413778439294)
  0%|          | 0/500 [00:00<?, ?it/s]
  0%|          | 0/3251 [00:00<?, ?it/s]
(0.29086115992970124, 0.30779960478902707, 0.29909075506861693)

Zadanie domowe

  • stworzyć model seq labelling bazujący na sieci neuronowej opisanej w punkcie niżej (można bazować na tym jupyterze lub nie).
  • model sieci to GRU (o dowolnych parametrach) + CRF w pytorchu korzystając z modułu CRF z poprzednich zajęć- - stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv
  • wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.65 termin 22.06, 60 punktów, za najlepszy wynik- 100 punktów