20 KiB
20 KiB
Ekstrakcja informacji
10. CRF [ćwiczenia]
Jakub Pokrywka (2021)
Podejście softmax z embeddingami na przykładzie NER
!pip install pytorch-crf
Requirement already satisfied: pytorch-crf in /home/kuba/anaconda3/envs/zajeciaei/lib/python3.10/site-packages (0.7.2)
import numpy as np
import gensim
import torch
import pandas as pd
import seaborn as sns
import torchtext
from sklearn.model_selection import train_test_split
from datasets import load_dataset
from torchtext.vocab import Vocab
from collections import Counter
from sklearn.datasets import fetch_20newsgroups
# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score
from tqdm.notebook import tqdm
import torch
from torchcrf import CRF
dataset = load_dataset("conll2003")
Reusing dataset conll2003 (/home/kuba/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/63f4ebd1bcb7148b1644497336fd74643d4ce70123334431a3c053b7ee4e96ee)
0%| | 0/3 [00:00<?, ?it/s]
def build_vocab(dataset):
counter = Counter()
for document in dataset:
counter.update(document)
vocab = torchtext.vocab.vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
vocab.set_default_index(0)
return vocab
vocab = build_vocab(dataset['train']['tokens'])
vocab['on']
21
def data_process(dt):
return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]
def labels_process(dt):
return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]
train_tokens_ids = data_process(dataset['train']['tokens'])
test_tokens_ids = data_process(dataset['test']['tokens'])
validation_tokens_ids = data_process(dataset['validation']['tokens'])
train_labels = labels_process(dataset['train']['ner_tags'])
validation_labels = labels_process(dataset['validation']['ner_tags'])
test_labels = labels_process(dataset['test']['ner_tags'])
train_tokens_ids[0]
tensor([ 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 3])
def get_scores(y_true, y_pred):
acc_score = 0
tp = 0
fp = 0
selected_items = 0
relevant_items = 0
for p,t in zip(y_pred, y_true):
if p == t:
acc_score +=1
if p > 0 and p == t:
tp +=1
if p > 0:
selected_items += 1
if t > 0 :
relevant_items +=1
if selected_items == 0:
precision = 1.0
else:
precision = tp / selected_items
if relevant_items == 0:
recall = 1.0
else:
recall = tp / relevant_items
if precision + recall == 0.0 :
f1 = 0.0
else:
f1 = 2* precision * recall / (precision + recall)
return precision, recall, f1
num_tags = max([max(x) for x in dataset['train']['ner_tags'] if x]) + 1
class FF(torch.nn.Module):
def __init__(self,):
super(FF, self).__init__()
self.emb = torch.nn.Embedding(23627,200)
self.fc1 = torch.nn.Linear(200,num_tags)
def forward(self, x):
x = self.emb(x)
x = self.fc1(x)
return x
ff = FF()
crf = CRF(num_tags)
params = list(ff.parameters()) + list(crf.parameters())
optimizer = torch.optim.Adam(params)
def eval_model(dataset_tokens, dataset_labels):
Y_true = []
Y_pred = []
ff.eval()
crf.eval()
for i in tqdm(range(len(dataset_labels))):
batch_tokens = dataset_tokens[i]
tags = list(dataset_labels[i].numpy())
emissions = ff(batch_tokens).unsqueeze(1)
Y_pred += crf.decode(emissions)[0]
Y_true += tags
return get_scores(Y_true, Y_pred)
NUM_EPOCHS = 4
for i in range(NUM_EPOCHS):
ff.train()
crf.train()
for i in tqdm(range(len(train_labels))):
batch_tokens = train_tokens_ids[i]
tags = train_labels[i].unsqueeze(1)
emissions = ff(batch_tokens).unsqueeze(1)
optimizer.zero_grad()
loss = -crf(emissions,tags)
import pdb; pdb.set_trace()
loss.backward()
optimizer.step()
ff.eval()
crf.eval()
print(eval_model(validation_tokens_ids, validation_labels))
0%| | 0/14042 [00:00<?, ?it/s]
> [0;32m/tmp/ipykernel_306568/4048919537.py[0m(12)[0;36m<cell line: 1>[0;34m()[0m [0;32m 10 [0;31m [0mloss[0m [0;34m=[0m [0;34m-[0m[0mcrf[0m[0;34m([0m[0memissions[0m[0;34m,[0m[0mtags[0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[0;32m 11 [0;31m [0;32mimport[0m [0mpdb[0m[0;34m;[0m [0mpdb[0m[0;34m.[0m[0mset_trace[0m[0;34m([0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[0;32m---> 12 [0;31m [0mloss[0m[0;34m.[0m[0mbackward[0m[0;34m([0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[0;32m 13 [0;31m [0moptimizer[0m[0;34m.[0m[0mstep[0m[0;34m([0m[0;34m)[0m[0;34m[0m[0;34m[0m[0m [0m[0;32m 14 [0;31m[0;34m[0m[0m [0m ipdb> batch_tokens tensor([ 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 3]) ipdb> tags.shape torch.Size([11, 1]) ipdb> tags tensor([[0], [3], [0], [7], [0], [0], [0], [7], [0], [0], [0]])
dir(crf)
['T_destination', '__annotations__', '__call__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattr__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setstate__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_apply', '_backward_hooks', '_buffers', '_call_impl', '_compute_normalizer', '_compute_score', '_forward_hooks', '_forward_pre_hooks', '_get_backward_hooks', '_get_name', '_is_full_backward_hook', '_load_from_state_dict', '_load_state_dict_pre_hooks', '_maybe_warn_non_full_backward_hook', '_modules', '_named_members', '_non_persistent_buffers_set', '_parameters', '_register_load_state_dict_pre_hook', '_register_state_dict_hook', '_replicate_for_data_parallel', '_save_to_state_dict', '_slow_forward', '_state_dict_hooks', '_validate', '_version', '_viterbi_decode', 'add_module', 'apply', 'batch_first', 'bfloat16', 'buffers', 'children', 'cpu', 'cuda', 'decode', 'double', 'dump_patches', 'end_transitions', 'eval', 'extra_repr', 'float', 'forward', 'get_buffer', 'get_extra_state', 'get_parameter', 'get_submodule', 'half', 'load_state_dict', 'modules', 'named_buffers', 'named_children', 'named_modules', 'named_parameters', 'num_tags', 'parameters', 'register_backward_hook', 'register_buffer', 'register_forward_hook', 'register_forward_pre_hook', 'register_full_backward_hook', 'register_module', 'register_parameter', 'requires_grad_', 'reset_parameters', 'set_extra_state', 'share_memory', 'start_transitions', 'state_dict', 'to', 'to_empty', 'train', 'training', 'transitions', 'type', 'xpu', 'zero_grad']
crf.transitions
Parameter containing: tensor([[ 0.1427, 0.0082, -0.0852, -0.0714, -0.0514, 0.0753, 0.0389, 0.0018, -0.0806], [-0.0809, -0.0508, 0.0520, -0.0619, 0.0181, -0.0729, -0.1430, -0.1055, 0.0384], [-0.0011, -0.1476, 0.0425, -0.0081, -0.1181, -0.0098, -0.0567, 0.0311, -0.0696], [-0.0443, -0.0741, 0.0463, -0.0967, -0.0403, -0.0243, 0.0098, -0.0063, -0.0811], [ 0.0632, -0.1175, -0.0992, 0.0198, 0.0310, -0.0059, 0.0191, -0.1303, -0.1423], [ 0.0029, 0.0296, 0.0152, -0.0418, -0.1068, -0.0920, -0.0380, 0.0461, 0.0167], [-0.1167, -0.0559, -0.0428, -0.0115, -0.1006, -0.1511, 0.0035, -0.0273, -0.1201], [-0.0378, 0.0481, -0.1474, -0.0154, 0.0347, -0.0392, -0.0755, -0.1227, 0.0448], [-0.0383, -0.0402, 0.0054, 0.0145, -0.1353, -0.0460, 0.0257, -0.0322, 0.0023]], requires_grad=True)
list(crf.parameters())
[Parameter containing: tensor([-0.0432, -0.1150, -0.1045, -0.0779, -0.0858, 0.0287, -0.1437, -0.1446, 0.0335], requires_grad=True), Parameter containing: tensor([ 0.0838, -0.0097, -0.1136, 0.0010, -0.1177, 0.0225, 0.0292, -0.0837, -0.1063], requires_grad=True), Parameter containing: tensor([[ 0.1427, 0.0082, -0.0852, -0.0714, -0.0514, 0.0753, 0.0389, 0.0018, -0.0806], [-0.0809, -0.0508, 0.0520, -0.0619, 0.0181, -0.0729, -0.1430, -0.1055, 0.0384], [-0.0011, -0.1476, 0.0425, -0.0081, -0.1181, -0.0098, -0.0567, 0.0311, -0.0696], [-0.0443, -0.0741, 0.0463, -0.0967, -0.0403, -0.0243, 0.0098, -0.0063, -0.0811], [ 0.0632, -0.1175, -0.0992, 0.0198, 0.0310, -0.0059, 0.0191, -0.1303, -0.1423], [ 0.0029, 0.0296, 0.0152, -0.0418, -0.1068, -0.0920, -0.0380, 0.0461, 0.0167], [-0.1167, -0.0559, -0.0428, -0.0115, -0.1006, -0.1511, 0.0035, -0.0273, -0.1201], [-0.0378, 0.0481, -0.1474, -0.0154, 0.0347, -0.0392, -0.0755, -0.1227, 0.0448], [-0.0383, -0.0402, 0.0054, 0.0145, -0.1353, -0.0460, 0.0257, -0.0322, 0.0023]], requires_grad=True)]
eval_model(validation_tokens_ids, validation_labels)
eval_model(test_tokens_ids, test_labels)
len(train_tokens_ids)
Zadanie domowe
- en-ner-conll-2003
- stworzyć klasyfikator bazujący na sieci neuronowej feed forward w pytorchu + CRF (można bazować na tym jupyterze lub nie).
- sieć feedforward powinna obejmować aktualne słowo, poprzednie i następne + dodatkowe cechy (np. długość wyrazu, czy wyraz zaczyna się od wielkiej litery, stemmming słowa, czy zawiera cyfrę)
- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv
- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.65
- 60 punktów, za najlepszy wynik- 100 punktów