huggingface herbert base

This commit is contained in:
kubapok 2021-07-11 22:37:19 +02:00
parent bee7eaa312
commit 488bcd58af
4 changed files with 10687 additions and 10570 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,16 @@
with open('../test-A/in.tsv','r') as f_in, open(f'../test-A/huggingface_format.tsv', 'w') as f_hf:
f_hf.write('text\n')
for line_in in f_in:
text = line_in.replace('\t', ' ')
f_hf.write(text)
for dataset in 'train', 'dev-0':
with open(f'../{dataset}/in.tsv') as f_in, open(f'../{dataset}/expected.tsv') as f_exp, open(f'../{dataset}/huggingface_format.tsv','w') as f_hf:
f_hf.write('text\tlabel\n')
for line_in, line_exp in zip(f_in, f_exp):
label = line_exp.rstrip('\n')
text = line_in.replace('\t', ' ').rstrip('\n')
f_hf.write(text +'\t'+ str(label) + '\n')

View File

@ -0,0 +1,28 @@
import pickle
from datasets import load_dataset
from transformers import AutoTokenizer
from config import MODEL, TOKENIZER
dataset = load_dataset('csv', sep='\t', data_files={'train': ['../train/huggingface_format.tsv'], 'test': ['../dev-0/huggingface_format.tsv']})
test_dataset = load_dataset('csv', sep = '\t', data_files ='../test-A/huggingface_format.tsv')
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER)
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
test_tokenized_datasets = test_dataset.map(tokenize_function, batched=True)
train_dataset = tokenized_datasets["train"].shuffle(seed=42)
eval_dataset = tokenized_datasets["test"]
test_dataset = test_tokenized_datasets["train"]
with open('train_dataset.pickle','wb') as f_p:
pickle.dump(train_dataset, f_p)
with open('eval_dataset.pickle','wb') as f_p:
pickle.dump(eval_dataset, f_p)
with open('test_dataset.pickle','wb') as f_p:
pickle.dump(test_dataset, f_p)

73
herbert/03_train.py Normal file
View File

@ -0,0 +1,73 @@
import pickle
from config import MODEL
from scipy.special import softmax
with open('train_dataset.pickle','rb') as f_p:
train_dataset = pickle.load(f_p)
with open('eval_dataset.pickle','rb') as f_p:
eval_dataset = pickle.load(f_p)
with open('test_dataset.pickle','rb') as f_p:
test_dataset = pickle.load(f_p)
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained(MODEL, num_labels=2)
from transformers import TrainingArguments
training_args = TrainingArguments("test_trainer",
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
evaluation_strategy='steps',
eval_steps=2_000,
gradient_accumulation_steps=10,
learning_rate=2e-6,
warmup_steps=4_000,
num_train_epochs=10,
load_best_model_at_end=True)
import numpy as np
from datasets import load_metric
metric = load_metric("f1")
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
from transformers import Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.save_model('./roberta_retrained')
trainer.evaluate()
eval_predictions = trainer.predict(eval_dataset).predictions
with open('../dev-0/out.tsv', 'w') as f_out:
for pred in eval_predictions:
pred = softmax(pred)[1]
f_out.write(str(pred) + '\n')
test_predictions = trainer.predict(test_dataset).predictions
with open('../test-A/out.tsv', 'w') as f_out:
for pred in test_predictions:
pred = softmax(pred)[1]
f_out.write(str(pred) + '\n')