en-ner-conll-2003/seq_labeling.py.ipynb

133 lines
3.3 KiB
Plaintext
Raw Normal View History

2021-06-01 16:48:56 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import os.path\n",
"import gzip\n",
"import shutil\n",
"import torch"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isfile('train/train.tsv'):\n",
" import lzma\n",
" with lzma.open('train/train.tsv.xz', 'rb') as f_in:\n",
" with open('train/train.tsv', 'wb') as f_out:\n",
" shutil.copyfileobj(f_in, f_out)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"raw_data = pd.read_csv('train/train.tsv', sep='\\t', names=['labels', 'text'])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Label</th>\n",
" <th>Word</th>\n",
" <th>WordLen</th>\n",
" <th>WordHasDigit</th>\n",
" <th>CapitalFirst</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [Label, Word, WordLen, WordHasDigit, CapitalFirst]\n",
"Index: []"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = []\n",
"for sentence in raw_data.to_numpy():\n",
" for label, word in zip(sentence[0].split(), sentence[1].split()):\n",
" data.append([label,word,len(word), any(c.isdigit() for c in word), word.isupper()])\n",
"df = pd.DataFrame(data, columns=['Label', 'Word', 'WordLen', 'WordHasDigit', 'CapitalFirst'], index=None)\n",
"df[df[\"Label\"]==None]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def labels_process(dt):\n",
" return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n",
"\n",
"def data_process(dt):\n",
" return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}